BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 24418322)

  • 1. Effective point of measurement for parallel plate and cylindrical ion chambers in megavoltage electron beams.
    von Voigts-Rhetz P; Czarnecki D; Zink K
    Z Med Phys; 2014 Sep; 24(3):216-23. PubMed ID: 24418322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective point of measurement of thimble ion chambers in megavoltage photon beams.
    Tessier F; Kawrakow I
    Med Phys; 2010 Jan; 37(1):96-107. PubMed ID: 20175470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of the effective point of measurement for ion chambers in electron beams by Monte Carlo simulation.
    Wang LL; Rogers DW
    Med Phys; 2009 Jun; 36(6):2034-42. PubMed ID: 19610292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo calculations of electron beam quality conversion factors for several ion chamber types.
    Muir BR; Rogers DW
    Med Phys; 2014 Nov; 41(11):111701. PubMed ID: 25370615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Replacement correction factors for plane-parallel ion chambers in electron beams.
    Wang LL; Rogers DW
    Med Phys; 2010 Feb; 37(2):461-5. PubMed ID: 20229854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of 0.5r
    Anusionwu PC; Alpuche Aviles JE; Pistorius S
    J Appl Clin Med Phys; 2020 Jan; 21(1):117-126. PubMed ID: 31898872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the wall perturbation correction for a parallel-plate NACP-02 chamber in clinical electron beams.
    Zink K; Wulff J
    Med Phys; 2011 Feb; 38(2):1045-54. PubMed ID: 21452742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possibility of using cylindrical ionization chambers for percent depth-dose measurements in clinical electron beams.
    Ono T; Araki F; Yoshiyama F
    Med Phys; 2011 Aug; 38(8):4647-54. PubMed ID: 21928637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo study of the depth-dependent fluence perturbation in parallel-plate ionization chambers in electron beams.
    Zink K; Czarnecki D; Looe HK; von Voigts-Rhetz P; Harder D
    Med Phys; 2014 Nov; 41(11):111707. PubMed ID: 25370621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental determination of the effective point of measurement of cylindrical ionization chambers for high-energy photon and electron beams.
    Huang Y; Willomitzer C; Zakaria GA; Hartmann GH
    Phys Med; 2010; 26(3):126-31. PubMed ID: 19926506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dosimetry using plane-parallel ionization chambers in a 75 MeV clinical proton beam.
    Palmans H; Verhaegen F; Denis JM; Vynckier S
    Phys Med Biol; 2002 Aug; 47(16):2895-905. PubMed ID: 12222853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Positioning of a plane-parallel ionization chamber in clinical electron beams and the impact on perturbation factors.
    Zink K; Wulff J
    Phys Med Biol; 2009 Apr; 54(8):2421-35. PubMed ID: 19336840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replacement correction factors for cylindrical ion chambers in electron beams.
    Wang LL; Rogers DW
    Med Phys; 2009 Oct; 36(10):4600-8. PubMed ID: 19928091
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental determination of the effective point of measurement for cylindrical ionization chambers in megavoltage photon beams.
    Iwafuchi Y; Oguchi H; Okudaira K; Yamamoto K
    Radiol Phys Technol; 2022 Dec; 15(4):291-297. PubMed ID: 35932415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiation induced currents in parallel plate ionization chambers: measurement and Monte Carlo simulation for megavoltage photon and electron beams.
    Abdel-Rahman W; Seuntjens JP; Verhaegen F; Podgorsak EB
    Med Phys; 2006 Sep; 33(9):3094-104. PubMed ID: 17022201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental investigation of the effective point of measurement for plane-parallel chambers used in electron beam dosimetry.
    Yasui K; Nakajima Y; Suda Y; Arai Y; Takizawa T; Sakai K; Fujita Y
    J Appl Clin Med Phys; 2023 Jul; 24(7):e14059. PubMed ID: 37307247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental investigation of the effect of air cavity size in cylindrical ionization chambers on the measurements in ⁶⁰Co radiotherapy beams.
    Swanpalmer J; Johansson KA
    Phys Med Biol; 2011 Nov; 56(22):7093-107. PubMed ID: 22016264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionization chamber gradient effects in nonstandard beam configurations.
    Bouchard H; Seuntjens J; Carrier JF; Kawrakow I
    Med Phys; 2009 Oct; 36(10):4654-63. PubMed ID: 19928097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effective point of measurement of ionization chambers and the build-up anomaly in MV x-ray beams.
    McEwen MR; Kawrakow I; Ross CK
    Med Phys; 2008 Mar; 35(3):950-8. PubMed ID: 18404931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulated beam quality and perturbation correction factors for ionization chambers in monoenergetic proton beams.
    Kretschmer J; Dulkys A; Brodbek L; Stelljes TS; Looe HK; Poppe B
    Med Phys; 2020 Nov; 47(11):5890-5905. PubMed ID: 32989779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.