BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 24418352)

  • 21. The roles of the two proton input channels in cytochrome c oxidase from Rhodobacter sphaeroides probed by the effects of site-directed mutations on time-resolved electrogenic intraprotein proton transfer.
    Konstantinov AA; Siletsky S; Mitchell D; Kaulen A; Gennis RB
    Proc Natl Acad Sci U S A; 1997 Aug; 94(17):9085-90. PubMed ID: 9256439
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A mechanistic principle for proton pumping by cytochrome c oxidase.
    Faxén K; Gilderson G; Adelroth P; Brzezinski P
    Nature; 2005 Sep; 437(7056):286-9. PubMed ID: 16148937
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Internal charge transfer in cytochrome c oxidase at a limited proton supply: proton pumping ceases at high pH.
    Lepp H; Brzezinski P
    Biochim Biophys Acta; 2009 Jun; 1790(6):552-7. PubMed ID: 19344748
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Why is the reduction of NO in cytochrome c dependent nitric oxide reductase (cNOR) not electrogenic?
    Blomberg MR; Siegbahn PE
    Biochim Biophys Acta; 2013 Jul; 1827(7):826-33. PubMed ID: 23618787
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox-coupled proton translocation in biological systems: proton shuttling in cytochrome c oxidase.
    Namslauer A; Pawate AS; Gennis RB; Brzezinski P
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15543-7. PubMed ID: 14676323
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Time-resolved generation of membrane potential by ba
    Siletsky SA; Belevich I; Belevich NP; Soulimane T; Wikström M
    Biochim Biophys Acta Bioenerg; 2017 Nov; 1858(11):915-926. PubMed ID: 28807731
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Active Site Midpoint Potentials in Different Cytochrome c Oxidase Families: A Computational Comparison.
    Blomberg MRA
    Biochemistry; 2019 Apr; 58(15):2028-2038. PubMed ID: 30892888
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Timing of electron and proton transfer in the ba(3) cytochrome c oxidase from Thermus thermophilus.
    von Ballmoos C; Lachmann P; Gennis RB; Ädelroth P; Brzezinski P
    Biochemistry; 2012 Jun; 51(22):4507-17. PubMed ID: 22624600
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding the cytochrome c oxidase proton pump: thermodynamics of redox linkage.
    Musser SM; Chan SI
    Biophys J; 1995 Jun; 68(6):2543-55. PubMed ID: 7647257
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How cytochrome c oxidase can pump four protons per oxygen molecule at high electrochemical gradient.
    Blomberg MRA; Siegbahn PEM
    Biochim Biophys Acta; 2015 Mar; 1847(3):364-376. PubMed ID: 25529353
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Aspartate-132 in cytochrome c oxidase from Rhodobacter sphaeroides is involved in a two-step proton transfer during oxo-ferryl formation.
    Smirnova IA; Adelroth P; Gennis RB; Brzezinski P
    Biochemistry; 1999 May; 38(21):6826-33. PubMed ID: 10346904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Decoupling mutations in the D-channel of the aa(3)-type cytochrome c oxidase from Rhodobacter sphaeroides suggest that a continuous hydrogen-bonded chain of waters is essential for proton pumping.
    Zhu J; Han H; Pawate A; Gennis RB
    Biochemistry; 2010 Jun; 49(21):4476-82. PubMed ID: 20441187
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cytochrome c oxidase: chemistry of a molecular machine.
    Musser SM; Stowell MH; Chan SI
    Adv Enzymol Relat Areas Mol Biol; 1995; 71():79-208. PubMed ID: 8644492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lysine 362 in cytochrome c oxidase regulates opening of the K-channel via changes in pKA and conformation.
    Woelke AL; Galstyan G; Knapp EW
    Biochim Biophys Acta; 2014 Dec; 1837(12):1998-2003. PubMed ID: 25149865
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pathways of proton transfer in cytochrome c oxidase.
    Brzezinski P; Adelroth P
    J Bioenerg Biomembr; 1998 Feb; 30(1):99-107. PubMed ID: 9623811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Redox-Active Tyrosine Is Essential for Proton Pumping in Cytochrome c Oxidase.
    Blomberg MRA
    Front Chem; 2021; 9():640155. PubMed ID: 33937193
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proton-transport mechanisms in cytochrome c oxidase revealed by studies of kinetic isotope effects.
    Johansson AL; Chakrabarty S; Berthold CL; Högbom M; Warshel A; Brzezinski P
    Biochim Biophys Acta; 2011 Sep; 1807(9):1083-94. PubMed ID: 21463601
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterizing the proton loading site in cytochrome c oxidase.
    Lu J; Gunner MR
    Proc Natl Acad Sci U S A; 2014 Aug; 111(34):12414-9. PubMed ID: 25114210
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intramolecular proton-transfer reactions in a membrane-bound proton pump: the effect of pH on the peroxy to ferryl transition in cytochrome c oxidase.
    Namslauer A; Aagaard A; Katsonouri A; Brzezinski P
    Biochemistry; 2003 Feb; 42(6):1488-98. PubMed ID: 12578361
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlled uncoupling and recoupling of proton pumping in cytochrome c oxidase.
    Brändén G; Pawate AS; Gennis RB; Brzezinski P
    Proc Natl Acad Sci U S A; 2006 Jan; 103(2):317-22. PubMed ID: 16407159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.