These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 24418392)

  • 41. Sulfur and selenium: the role of oxidation state in protein structure and function.
    Jacob C; Giles GI; Giles NM; Sies H
    Angew Chem Int Ed Engl; 2003 Oct; 42(39):4742-58. PubMed ID: 14562341
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Methionine-oxidized amyloid fibrils are poor substrates for human methionine sulfoxide reductases A and B2.
    Binger KJ; Griffin MD; Heinemann SH; Howlett GJ
    Biochemistry; 2010 Apr; 49(14):2981-3. PubMed ID: 20218727
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selenium and Methionine Sulfoxide Reduction.
    Gladyshev VN
    Free Radic Biol Med; 2014 Oct; 75 Suppl 1():S8-9. PubMed ID: 26461418
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Redox State Controls Phase Separation of the Yeast Ataxin-2 Protein via Reversible Oxidation of Its Methionine-Rich Low-Complexity Domain.
    Kato M; Yang YS; Sutter BM; Wang Y; McKnight SL; Tu BP
    Cell; 2019 Apr; 177(3):711-721.e8. PubMed ID: 30982603
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modulating protein activity and cellular function by methionine residue oxidation.
    Cui ZJ; Han ZQ; Li ZY
    Amino Acids; 2012 Aug; 43(2):505-17. PubMed ID: 22146868
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Redox-regulated methionine oxidation of Arabidopsis thaliana glutathione transferase Phi9 induces H-site flexibility.
    Tossounian MA; Wahni K; Van Molle I; Vertommen D; Astolfi Rosado L; Messens J
    Protein Sci; 2019 Jan; 28(1):56-67. PubMed ID: 29732642
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regulation of protein tyrosine phosphatases by reversible oxidation.
    Ostman A; Frijhoff J; Sandin A; Böhmer FD
    J Biochem; 2011 Oct; 150(4):345-56. PubMed ID: 21856739
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Redox photochemistry of methionine by sulfur K-edge X-ray absorption spectroscopy: potential implications for cataract formation.
    Karunakaran-Datt A; Kennepohl P
    J Am Chem Soc; 2009 Mar; 131(10):3577-82. PubMed ID: 19226173
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Methionine Sulfoxide Reductases of Archaea.
    Maupin-Furlow JA
    Antioxidants (Basel); 2018 Sep; 7(10):. PubMed ID: 30241308
    [TBL] [Abstract][Full Text] [Related]  

  • 50. E. coli methionine sulfoxide reductase with a truncated N terminus or C terminus, or both, retains the ability to reduce methionine sulfoxide.
    Boschi-Muller S; Azza S; Branlant G
    Protein Sci; 2001 Nov; 10(11):2272-9. PubMed ID: 11604533
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chalcogen-based ratiometric reversible BODIPY redox sensors for the determination of enantioselective methionine sulfoxide reductase activity.
    Poljak M; Wohlrábová L; Palao E; Nociarová J; Míšek J; Slanina T; Klán P
    Chem Commun (Camb); 2022 May; 58(44):6389-6392. PubMed ID: 35543358
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The thioredoxin/peroxiredoxin/sulfiredoxin system: current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species.
    Sevilla F; Camejo D; Ortiz-Espín A; Calderón A; Lázaro JJ; Jiménez A
    J Exp Bot; 2015 May; 66(10):2945-55. PubMed ID: 25873657
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biochemistry of methionine sulfoxide residues in proteins.
    Brot N; Weissbach H
    Biofactors; 1991 Jun; 3(2):91-6. PubMed ID: 1910456
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Oxidative stress, protein damage and repair in bacteria.
    Ezraty B; Gennaris A; Barras F; Collet JF
    Nat Rev Microbiol; 2017 Jul; 15(7):385-396. PubMed ID: 28420885
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Redox regulation of cysteine-dependent enzymes.
    Guttmann RP
    J Anim Sci; 2010 Apr; 88(4):1297-306. PubMed ID: 19820057
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reversible methionine sulfoxidation of Mycobacterium tuberculosis small heat shock protein Hsp16.3 and its possible role in scavenging oxidants.
    Abulimiti A; Qiu X; Chen J; Liu Y; Chang Z
    Biochem Biophys Res Commun; 2003 May; 305(1):87-93. PubMed ID: 12732200
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Detection and localization of methionine sulfoxide residues of specific proteins in brain tissue.
    Moskovitz J
    Protein Pept Lett; 2014; 21(1):52-5. PubMed ID: 24354771
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Redox regulation of cytoskeletal dynamics during differentiation and de-differentiation.
    Gellert M; Hanschmann EM; Lepka K; Berndt C; Lillig CH
    Biochim Biophys Acta; 2015 Aug; 1850(8):1575-87. PubMed ID: 25450486
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Monitoring methionine sulfoxide with stereospecific mechanism-based fluorescent sensors.
    Tarrago L; Péterfi Z; Lee BC; Michel T; Gladyshev VN
    Nat Chem Biol; 2015 May; 11(5):332-8. PubMed ID: 25799144
    [TBL] [Abstract][Full Text] [Related]  

  • 60. MetOSite: an integrated resource for the study of methionine residues sulfoxidation.
    Valverde H; Cantón FR; Aledo JC
    Bioinformatics; 2019 Nov; 35(22):4849-4850. PubMed ID: 31197322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.