BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 24418648)

  • 1. Rationalization of thermal injury quantification methods: application to skin burns.
    Viglianti BL; Dewhirst MW; Abraham JP; Gorman JM; Sparrow EM
    Burns; 2014 Aug; 40(5):896-902. PubMed ID: 24418648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new thermal dose model based on Vogel-Tammann-Fulcher behaviour in thermal damage processes.
    Assi HTI; Arsenault MG; Whelan WM; Kumaradas JC
    Int J Hyperthermia; 2022; 39(1):697-705. PubMed ID: 35469518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of thermal dose in moderate clinical hyperthermia with radiotherapy: a relook using temperature-time area under the curve (AUC).
    Datta NR; Marder D; Datta S; Meister A; Puric E; Stutz E; Rogers S; Eberle B; Timm O; Staruch M; Riesterer O; Bodis S
    Int J Hyperthermia; 2021; 38(1):296-307. PubMed ID: 33627018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental investigation and histopathological identification of acute thermal damage in skeletal porcine muscle in relation to whole-body SAR, maximum temperature, and CEM43 °C due to RF irradiation in an MR body coil of birdcage type at 123 MHz.
    Nadobny J; Klopfleisch R; Brinker G; Stoltenburg-Didinger G
    Int J Hyperthermia; 2015 Jun; 31(4):409-20. PubMed ID: 25716768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 'Relationship between thermal dose and cell death for "rapid" ablative and "slow" hyperthermic heating'.
    Mouratidis PXE; Rivens I; Civale J; Symonds-Tayler R; Ter Haar G
    Int J Hyperthermia; 2019; 36(1):229-243. PubMed ID: 30700171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CEM43°C thermal dose thresholds: a potential guide for magnetic resonance radiofrequency exposure levels?
    van Rhoon GC; Samaras T; Yarmolenko PS; Dewhirst MW; Neufeld E; Kuster N
    Eur Radiol; 2013 Aug; 23(8):2215-27. PubMed ID: 23553588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling Skin Injury from Hot Spills on Clothing.
    Log T
    Int J Environ Res Public Health; 2017 Nov; 14(11):. PubMed ID: 29137118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review of the evidence for threshold of burn injury.
    Martin NA; Falder S
    Burns; 2017 Dec; 43(8):1624-1639. PubMed ID: 28536038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of thermal properties and geometrical dimensions on skin burn injuries.
    Jiang SC; Ma N; Li HJ; Zhang XX
    Burns; 2002 Dec; 28(8):713-7. PubMed ID: 12464468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of CEM43 degrees CT90 thermal dose in superficial hyperthermia: a retrospective analysis.
    de Bruijne M; van der Holt B; van Rhoon GC; van der Zee J
    Strahlenther Onkol; 2010 Aug; 186(8):436-43. PubMed ID: 20803284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal Skin Damage During Reirradiation and Hyperthermia Is Time-Temperature Dependent.
    Bakker A; Kolff MW; Holman R; van Leeuwen CM; Korshuize-van Straten L; de Kroon-Oldenhof R; Rasch CRN; van Tienhoven G; Crezee H
    Int J Radiat Oncol Biol Phys; 2017 Jun; 98(2):392-399. PubMed ID: 28463159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of comparable scald and contact burns in a porcine model: A preliminary report.
    Singer AJ; Zhou JW; Osman OB; Harris ZB; Khani ME; Baer E; Zhang N; McClain SA; Arbab MH
    Wound Repair Regen; 2020 Nov; 28(6):789-796. PubMed ID: 32729128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcutaneous Recharge: A Comparison of Numerical Simulation to In Vivo Experiments.
    Plourde B; Vallez L; Nelson-Cheeseman B; Abraham J
    Neuromodulation; 2017 Aug; 20(6):613-621. PubMed ID: 28653422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling Skin Injury from Hot Rice Porridge Spills.
    Log T
    Int J Environ Res Public Health; 2018 Apr; 15(4):. PubMed ID: 29677134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of topical anesthetic hydration on the depth of thermal injury from the plasma skin regeneration device.
    Sanderson AR; Wu EC; Liaw LH; Garg R; Gangnes RA
    Lasers Surg Med; 2014 Feb; 46(2):127-31. PubMed ID: 24375476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiofrequency ablation: variability in heat sensitivity in tumors and tissues.
    Mertyna P; Hines-Peralta A; Liu ZJ; Halpern E; Goldberg W; Goldberg SN
    J Vasc Interv Radiol; 2007 May; 18(5):647-54. PubMed ID: 17494847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal ablation a comparison of thermal dose required for radiofrequency-, microwave-, and laser-induced coagulation in an ex vivo bovine liver model.
    Mertyna P; Goldberg W; Yang W; Goldberg SN
    Acad Radiol; 2009 Dec; 16(12):1539-48. PubMed ID: 19836267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element simulation and integration of CEM43 °C and Arrhenius Models for ultrasonic-assisted skull bone grinding: A thermal dose model.
    Babbar A; Jain V; Gupta D; Agrawal D
    Med Eng Phys; 2021 Apr; 90():9-22. PubMed ID: 33781484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Skin biothermomechanics for medical treatments.
    Xu F; Wen T; Lu TJ; Seffen KA
    J Mech Behav Biomed Mater; 2008 Apr; 1(2):172-87. PubMed ID: 19627782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating the time and temperature relationship for causation of deep-partial thickness skin burns.
    Abraham JP; Plourde B; Vallez L; Stark J; Diller KR
    Burns; 2015 Dec; 41(8):1741-1747. PubMed ID: 26188899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.