BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24418921)

  • 21. Diagnosis of colon cancer with Fourier transform infrared spectroscopy on the malignant colon tissue samples.
    Xie YB; Liu Q; He F; Guo CG; Wang CF; Zhao P
    Chin Med J (Engl); 2011 Aug; 124(16):2517-21. PubMed ID: 21933598
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FTIR spectroscopy of biofluids revisited: an automated approach to spectral biomarker identification.
    Ollesch J; Drees SL; Heise HM; Behrens T; Brüning T; Gerwert K
    Analyst; 2013 Jul; 138(14):4092-102. PubMed ID: 23712384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spectral signatures of colonic malignancies in the mid-infrared region: from basic research to clinical applicability.
    Sahu RK; Mordechai S
    Future Oncol; 2010 Oct; 6(10):1653-67. PubMed ID: 21062162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Application of KNN method to cancer diagnosis using Fourier-transform infrared spectroscopy].
    Li X; Li QB; Xu YZ; Zhang GJ; Wu JG; Yang LM; Ling XF; Zhou XS; Wang JS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Mar; 27(3):439-43. PubMed ID: 17554893
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectral morphometric characterization of breast carcinoma cells.
    Barshack I; Kopolovic J; Malik Z; Rothmann C
    Br J Cancer; 1999 Mar; 79(9-10):1613-9. PubMed ID: 10188915
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The potential role of Fourier transform infrared spectroscopy and imaging in cancer diagnosis incorporating complex mathematical methods.
    Schultz CP
    Technol Cancer Res Treat; 2002 Apr; 1(2):95-104. PubMed ID: 12622515
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fourier-transform infrared spectroscopy discriminates a spectral signature of endometriosis independent of inter-individual variation.
    Cheung KT; Trevisan J; Kelly JG; Ashton KM; Stringfellow HF; Taylor SE; Singh MN; Martin-Hirsch PL; Martin FL
    Analyst; 2011 May; 136(10):2047-55. PubMed ID: 21423930
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of stromal-epithelial interactions on breast cancer in vitro and in vivo.
    Potter SM; Dwyer RM; Hartmann MC; Khan S; Boyle MP; Curran CE; Kerin MJ
    Breast Cancer Res Treat; 2012 Jan; 131(2):401-11. PubMed ID: 21344235
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of microRNA-125b expression in MCF7 breast cancer cells by ATR-FTIR spectroscopy.
    Ozek NS; Tuna S; Erson-Bensan AE; Severcan F
    Analyst; 2010 Dec; 135(12):3094-102. PubMed ID: 20978686
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fourier transform infrared imaging analysis in discrimination studies of bladder cancer.
    Pezzei C; Brunner A; Bonn GK; Huck CW
    Analyst; 2013 Oct; 138(19):5719-25. PubMed ID: 23897512
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gastric cancer differentiation using Fourier transform near-infrared spectroscopy with unsupervised pattern recognition.
    Yi WS; Cui DS; Li Z; Wu LL; Shen AG; Hu JM
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jan; 101():127-31. PubMed ID: 23099170
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new, non-destructive method for analysis of clinical samples with FT-IR microspectroscopy. Breast cancer tissue as an example.
    Dukor RK; Liebman MN; Johnson BL
    Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):211-7. PubMed ID: 9551652
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Fourier transform infrared spectroscopy in detection of breast cancer].
    Chen SH; Lao WW; Xu ZX; Liu Q; Wen H; Deng H
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2014 Jul; 43(4):494-500. PubMed ID: 25187467
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of ovarian cancer cells and tissues by Fourier transform infrared spectroscopy.
    Li L; Bi X; Sun H; Liu S; Yu M; Zhang Y; Weng S; Yang L; Bao Y; Wu J; Xu Y; Shen K
    J Ovarian Res; 2018 Aug; 11(1):64. PubMed ID: 30071867
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toward optimal spatial and spectral quality in widefield infrared spectromicroscopy of IR labelled single cells.
    Mattson EC; Unger M; Clède S; Lambert F; Policar C; Imtiaz A; D'Souza R; Hirschmugl CJ
    Analyst; 2013 Oct; 138(19):5610-8. PubMed ID: 23826609
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fourier transform infrared spectroscopy of gallbladder carcinoma cell line.
    Du JK; Shi JS; Sun XJ; Wang JS; Xu YZ; Wu JG; Zhang YF; Weng SF
    Hepatobiliary Pancreat Dis Int; 2009 Feb; 8(1):75-8. PubMed ID: 19208520
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [FTIR spectroscopic explorations of clinical practice of breast cancer].
    Ling XF; Xu Z; Xu YZ; Li QB; Zhou S; Zhang L; Zhao HM; Hou CS; Wang LX; Hou KY; Zhou XS; Wu JG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Feb; 25(2):198-200. PubMed ID: 15852855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Infrared spectroscopy of human tissue. IV. Detection of dysplastic and neoplastic changes of human cervical tissue via infrared microscopy.
    Chiriboga L; Xie P; Yee H; Zarou D; Zakim D; Diem M
    Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):219-29. PubMed ID: 9551653
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Fourier transform infrared spectra analysis of nucleic acid in human breast tissue].
    Fan XY; Huo H; Huang WD; Che X; Wang XF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Jan; 24(1):54-8. PubMed ID: 15768975
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ identification and localization of IGHA2 in the breast tumor microenvironment by mass spectrometry.
    Kang S; Maeng H; Kim BG; Qing GM; Choi YP; Kim HY; Kim PS; Kim Y; Kim YH; Choi YD; Cho NH
    J Proteome Res; 2012 Sep; 11(9):4567-74. PubMed ID: 22894699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.