These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 2441919)

  • 41. Effects of cadmium and zinc on calcium uptake in human red blood cells.
    Plishker GA
    Am J Physiol; 1984 Sep; 247(3 Pt 1):C143-9. PubMed ID: 6089571
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Alcohol and the calcium-dependent potassium transport of human erythrocytes.
    Harris RA; Caldwell KK
    Alcohol; 1985; 2(1):149-52. PubMed ID: 4015829
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulation of plastic properties of electroexcitable neuron membrane by serotonin.
    D'yakonova TL
    Neurosci Behav Physiol; 1986; 16(5):389-94. PubMed ID: 2436084
    [No Abstract]   [Full Text] [Related]  

  • 44. Decreased 45calcium uptake in red cells of patients with essential hypertension.
    Ronquist G; Frithz G
    Acta Med Scand; 1988; 224(5):445-9. PubMed ID: 3144154
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Near-normal circulatory survival of rabbit red cells exposed to high levels of Ca and ionophore in vitro.
    Bookchin RM; Roth EF; Lew VL
    Blood; 1985 Jul; 66(1):220-3. PubMed ID: 3924140
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Red blood cell potassium and insulin release.
    Vinik AI; Jessop S
    Horm Metab Res; 1974 Nov; 6(6):526. PubMed ID: 4452551
    [No Abstract]   [Full Text] [Related]  

  • 47. Inhibition of the erythrocyte calcium-sensitive potassium channel by probucol.
    Howland JL; Daughtey JN; Donatelli M; Theofrastous JP
    Pharmacol Res Commun; 1984 Nov; 16(11):1057-64. PubMed ID: 6097921
    [No Abstract]   [Full Text] [Related]  

  • 48. [The effect of psychopharmacologic agents on potassium efflux induced by an increase in intracellular calcium in human erythrocytes].
    Varecka L; Peterajová E
    Bratisl Lek Listy; 1984 Aug; 82(2):919-26. PubMed ID: 6488072
    [No Abstract]   [Full Text] [Related]  

  • 49. The role of calcium in the potassium permeability of human erythrocytes.
    GARDOS G
    Acta Physiol Acad Sci Hung; 1959; 15(2):121-5. PubMed ID: 13660848
    [No Abstract]   [Full Text] [Related]  

  • 50. The function of calcium in the potassium permeability of human erythrocytes.
    GARDOS G
    Biochim Biophys Acta; 1958 Dec; 30(3):653-4. PubMed ID: 13618284
    [No Abstract]   [Full Text] [Related]  

  • 51. [Experiments on the mechanism of action of lead on potassium permeability of red blood cells].
    GRIGARZIK H; PASSOW H
    Pflugers Arch Gesamte Physiol Menschen Tiere; 1958; 267(1):73-92. PubMed ID: 13601013
    [No Abstract]   [Full Text] [Related]  

  • 52. [Results obtained in the treatment of congestive and congestive-spasmodic rhinitis with calcium and quinine].
    VAILATI PA
    Sem Med; 1950 Apr; 57(14):549. PubMed ID: 15418289
    [No Abstract]   [Full Text] [Related]  

  • 53. [The use of calcium-quinine in the obstetric clinic].
    BOTELLA LLUSIA J; PEREIRA MARTINEZ A; GARCIA del ALAMO J
    Farmacoter Actual; 1947 Feb; 4(32):98-109. PubMed ID: 20247422
    [No Abstract]   [Full Text] [Related]  

  • 54. Simple Tests for Stock Solutions of Quinine and Potassium Iodide.
    Megaw JWD; Hawley H
    Ind Med Gaz; 1929 Jul; 64(7):378-380. PubMed ID: 29009761
    [No Abstract]   [Full Text] [Related]  

  • 55. Normal calcium-activated potassium channel in red cells in type 2 diabetes.
    Burnett MA; Del Vecchio M; Bown E; O'Rahilly S; Turner RC
    Diabetes Res; 1987 May; 5(1):19-21. PubMed ID: 2441919
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Calcium-activated potassium channels in isolated presynaptic nerve terminals from rat brain.
    Bartschat DK; Blaustein MP
    J Physiol; 1985 Apr; 361():441-57. PubMed ID: 2580982
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of quinine and apamin on the calcium-dependent potassium permeability of mammalian hepatocytes and red cells.
    Burgess GM; Claret M; Jenkinson DH
    J Physiol; 1981 Aug; 317():67-90. PubMed ID: 6273550
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Differences in the actions of some blockers of the calcium-activated potassium permeability in mammalian red cells.
    Benton DC; Roxburgh CJ; Ganellin CR; Shiner MA; Jenkinson DH
    Br J Pharmacol; 1999 Jan; 126(1):169-78. PubMed ID: 10051133
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Properties of the Ca-activated K+ channel in pancreatic beta-cells.
    Atwater I; Rosario L; Rojas E
    Cell Calcium; 1983 Dec; 4(5-6):451-61. PubMed ID: 6323007
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Calcium-activated potassium channels in liver cells.
    Jenkinson DH; Haylett DG; Cook NS
    Cell Calcium; 1983 Dec; 4(5-6):429-37. PubMed ID: 6323005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.