These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 24419285)
41. IBIL analysis of road dust samples from San Bernardo tunnel. Valotto G; Quaranta A; Guella G; Rampazzo G Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jan; 117():459-64. PubMed ID: 24013677 [TBL] [Abstract][Full Text] [Related]
42. Assessment of inorganic content of PM(2.5) particles sampled in a rural area north-east of Hanoi, Vietnam. Gatari MJ; Boman J; Wagner A; Janhäll S; Isakson J Sci Total Environ; 2006 Sep; 368(2-3):675-85. PubMed ID: 16764908 [TBL] [Abstract][Full Text] [Related]
43. Chemical profile identification of fugitive and confined particle emissions from an integrated iron and steelmaking plant. Hleis D; Fernández-Olmo I; Ledoux F; Kfoury A; Courcot L; Desmonts T; Courcot D J Hazard Mater; 2013 Apr; 250-251():246-55. PubMed ID: 23454464 [TBL] [Abstract][Full Text] [Related]
44. Selective detection and characterization of nanoparticles from motor vehicles. Johnston MV; Klems JP; Zordan CA; Pennington MR; Smith JN; Res Rep Health Eff Inst; 2013 Feb; (173):3-45. PubMed ID: 23614271 [TBL] [Abstract][Full Text] [Related]
45. The application of bio-indicators for the assessment of air pollution. Panichev N; McCrindle RI J Environ Monit; 2004 Feb; 6(2):121-3. PubMed ID: 14760455 [TBL] [Abstract][Full Text] [Related]
46. Evaluation of quantitative procedures for X-ray microanalysis of environmental particles. Choël M; Deboudt K; Flament P Microsc Res Tech; 2007 Nov; 70(11):996-1002. PubMed ID: 17661395 [TBL] [Abstract][Full Text] [Related]
47. Characterization of wood dust from furniture by scanning electron microscopy and energy-dispersive x-ray analysis. Gómez Yepes ME; Cremades LV Ind Health; 2011; 49(4):492-500. PubMed ID: 21697619 [TBL] [Abstract][Full Text] [Related]
48. Effects of concentrated ambient particles on normal and hypersecretory airways in rats. Harkema JR; Keeler G; Wagner J; Morishita M; Timm E; Hotchkiss J; Marsik F; Dvonch T; Kaminski N; Barr E Res Rep Health Eff Inst; 2004 Aug; (120):1-68; discussion 69-79. PubMed ID: 15543855 [TBL] [Abstract][Full Text] [Related]
49. Levels, chemical composition and sources of fine aerosol particles (PM1) in an area of the Mediterranean basin. Caggiano R; Macchiato M; Trippetta S Sci Total Environ; 2010 Jan; 408(4):884-95. PubMed ID: 19914683 [TBL] [Abstract][Full Text] [Related]
50. [Composition of the dust for the assessment of the exposure to the population in the areas of influence of industrial emissions of stationary sources]. Zaĭtseva NV; Maĭ IV; Zagorodnov SIu Gig Sanit; 2013; (5):19-23. PubMed ID: 24340903 [TBL] [Abstract][Full Text] [Related]
51. REE characteristics and Pb, Sr and Nd isotopic compositions of steel plant emissions. Geagea ML; Stille P; Millet M; Perrone T Sci Total Environ; 2007 Feb; 373(1):404-19. PubMed ID: 17175008 [TBL] [Abstract][Full Text] [Related]
52. Characterization of heavy metal particles embedded in tire dust. Adachi K; Tainosho Y Environ Int; 2004 Oct; 30(8):1009-17. PubMed ID: 15337346 [TBL] [Abstract][Full Text] [Related]
53. Characterization of atmospheric dry deposition particulates in Kobe, Japan. Adachi K Chemosphere; 2006 Aug; 64(8):1311-7. PubMed ID: 16466772 [TBL] [Abstract][Full Text] [Related]
54. Bark, soil and lichens are effective indicators of dust from limestone industries in Thailand. Boonpeng C; Fuangkeaw P; Boonpragob K Environ Monit Assess; 2023 May; 195(6):681. PubMed ID: 37191891 [TBL] [Abstract][Full Text] [Related]
55. Technogenic magnetic particles in topsoil: Characteristic features for different emission sources. Magiera T; Górka-Kostrubiec B; Szumiata T; Bućko MS Sci Total Environ; 2023 Mar; 865():161186. PubMed ID: 36581291 [TBL] [Abstract][Full Text] [Related]
56. Assessment of particulate matter in the urban atmosphere: size distribution, metal composition and source characterization using principal component analysis. Onat B; Alver Şahin Ü; Bayat C J Environ Monit; 2012 May; 14(5):1400-9. PubMed ID: 22454094 [TBL] [Abstract][Full Text] [Related]
57. Influence of source distribution and geochemical composition of aerosols on children exposure in the large polymetallic mining region of the Bolivian Altiplano. Goix S; Point D; Oliva P; Polve M; Duprey JL; Mazurek H; Guislain L; Huayta C; Barbieri FL; Gardon J Sci Total Environ; 2011 Dec; 412-413():170-84. PubMed ID: 22044583 [TBL] [Abstract][Full Text] [Related]
58. Fractionation of eleven elements by chemical bonding from airborne particulate matter collected in an industrial city in Argentina. Fujiwara F; Dos Santos M; Marrero J; Polla G; Gómez D; Dawidowski L; Smichowski P J Environ Monit; 2006 Sep; 8(9):913-22. PubMed ID: 16951751 [TBL] [Abstract][Full Text] [Related]
59. Composition of smoke generated by landing aircraft. Bennett M; Christie SM; Graham A; Thomas BS; Vishnyakov V; Morris K; Peters DM; Jones R; Ansell C Environ Sci Technol; 2011 Apr; 45(8):3533-8. PubMed ID: 21434600 [TBL] [Abstract][Full Text] [Related]
60. Metal exposure in cows grazing pasture contaminated by iron industry: Insights from magnetic particles used as tracers. Ayrault S; Catinon M; Boudouma O; Bordier L; Agnello G; Reynaud S; Tissut M Environ Pollut; 2016 May; 212():565-573. PubMed ID: 26986087 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]