These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 24419285)
61. Characterising the morphological properties and surface composition of radium contaminated particles: a means of interpreting origin and deposition. Wilson CA; Adderley WP; Tyler AN; Dale P Environ Sci Process Impacts; 2013 Oct; 15(10):1921-9. PubMed ID: 24056577 [TBL] [Abstract][Full Text] [Related]
62. Three-dimensional model of magnetic susceptibility in forest topsoil: An indirect method to discriminate contaminant migration. Łukasik A; Szuszkiewicz M; Wanic T; Gruba P Environ Pollut; 2021 Jan; 273():116491. PubMed ID: 33493765 [TBL] [Abstract][Full Text] [Related]
64. Combined magnetic, chemical and morphoscopic analyses on lichens from a complex anthropic context in Rome, Italy. Winkler A; Caricchi C; Guidotti M; Owczarek M; Macrì P; Nazzari M; Amoroso A; Di Giosa A; Listrani S Sci Total Environ; 2019 Nov; 690():1355-1368. PubMed ID: 31470497 [TBL] [Abstract][Full Text] [Related]
65. Break down of asian dust particle on wet surface and their possibilities of cause of respiratory health effects. Yamaguchi N; Sakotani A; Ichijo T; Kenzaka T; Tani K; Baba T; Nasu M Biol Pharm Bull; 2012; 35(7):1187-90. PubMed ID: 22791171 [TBL] [Abstract][Full Text] [Related]
66. Morphology and mineralogical composition of sandblasting dust particles from the Taklimakan Desert. Hu T; Wu F; Song Y; Liu S; Duan J; Zhu Y; Cao J; Zhang D Sci Total Environ; 2022 Aug; 834():155315. PubMed ID: 35447171 [TBL] [Abstract][Full Text] [Related]
67. Characterization of atmospheric particles in Seoul, Korea using SEM-EDX. Kang E; Park I; Lee YJ; Lee M J Nanosci Nanotechnol; 2012 Jul; 12(7):6016-21. PubMed ID: 22966700 [TBL] [Abstract][Full Text] [Related]
68. The Progress in Electron Microscopy Studies of Particulate Matters to Be Used as a Standard Monitoring Method for Air Dust Pollution. Sielicki P; Janik H; Guzman A; Namieśnik J Crit Rev Anal Chem; 2011; 41(4):314-334. PubMed ID: 28094548 [TBL] [Abstract][Full Text] [Related]
69. Enrichment adsorption of a labile substance to the surface of particular mineral particles in river water as investigated by SEM-EDX and dilute-acid extraction/ICP-MS. Kyotani T; Koshimizu S Anal Sci; 2003 Jun; 19(6):835-41. PubMed ID: 12834221 [TBL] [Abstract][Full Text] [Related]
70. The use of SEM/EDX for studying the distribution of air pollutants in the surroundings of the emission source. Haapala H Environ Pollut; 1998; 99(3):361-3. PubMed ID: 15093300 [TBL] [Abstract][Full Text] [Related]
71. Method Development for Separation and Analysis of Tire and Road Wear Particles from Roadside Soil Samples. Thomas J; Moosavian SK; Cutright T; Pugh C; Soucek MD Environ Sci Technol; 2022 Sep; 56(17):11910-11921. PubMed ID: 35980850 [TBL] [Abstract][Full Text] [Related]
72. Characterization of Si and SiO Kouam J; Songmene V; Bahloul A; Samuel AM Materials (Basel); 2022 Jun; 15(11):. PubMed ID: 35683263 [TBL] [Abstract][Full Text] [Related]
73. Effect of heterogeneity and shape on optical properties of urban dust based on three-dimensional modeling of individual particles. Conny JM; Ortiz-Montalvo DL J Geophys Res Atmos; 2017; 122(18):. PubMed ID: 32166054 [TBL] [Abstract][Full Text] [Related]
74. Analysis of networks based on styrene and divinylbenzene containing iron anchored using variable pressure scanning electron microscopy. de Santa Maria LC; Leite MC; Costa MA; Ribeiro JM; Senna LF; Silva MR J Microsc; 2004 Feb; 213(2):94-100. PubMed ID: 14731290 [TBL] [Abstract][Full Text] [Related]
75. Characterization of aluminum hydroxide particles from the Bayer process using neural network and Bayesian classifiers. Zaknich A IEEE Trans Neural Netw; 1997; 8(4):919-31. PubMed ID: 18255695 [TBL] [Abstract][Full Text] [Related]
76. Application of soil magnetometry and geochemical methods to investigate soil contamination with antimony. Jabłońska-Czapla M; Rachwał M; Grygoyć K; Wawer-Liszka M Environ Geochem Health; 2024 Jul; 46(8):287. PubMed ID: 38970741 [TBL] [Abstract][Full Text] [Related]
77. Quantification of pedogenic particles masked by geogenic magnetic fraction. Szuszkiewicz M; Grison H; Petrovský E; Szuszkiewicz MM; Gołuchowska B; Łukasik A Sci Rep; 2021 Jul; 11(1):14800. PubMed ID: 34285250 [TBL] [Abstract][Full Text] [Related]
78. Isolation of technogenic magnetic particles. Catinon M; Ayrault S; Boudouma O; Bordier L; Agnello G; Reynaud S; Tissut M Sci Total Environ; 2014 Mar; 475():39-47. PubMed ID: 24419285 [TBL] [Abstract][Full Text] [Related]
79. The inclusion of atmospheric particles into the bark suber of ash trees. Catinon M; Ayrault S; Boudouma O; Asta J; Tissut M; Ravanel P Chemosphere; 2009 Nov; 77(10):1313-20. PubMed ID: 19846195 [TBL] [Abstract][Full Text] [Related]
80. Chemical speciation of size-segregated floor dusts and airborne magnetic particles collected at underground subway stations in Seoul, Korea. Jung HJ; Kim B; Malek MA; Koo YS; Jung JH; Son YS; Kim JC; Kim H; Ro CU J Hazard Mater; 2012 Apr; 213-214():331-40. PubMed ID: 22381374 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]