These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 24419361)

  • 21. Alterations in Carbohydrate Intermediates in the Endosperm of Starch-Deficient Maize (Zea mays L.) Genotypes.
    Tobias RB; Boyer CD; Shannon JC
    Plant Physiol; 1992 May; 99(1):146-52. PubMed ID: 16668842
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Causes and consequences of endogenous hypoxia on growth and metabolism of developing maize kernels.
    Langer M; Hilo A; Guan JC; Koch KE; Xiao H; Verboven P; Gündel A; Wagner S; Ortleb S; Radchuk V; Mayer S; Nicolai B; Borisjuk L; Rolletschek H
    Plant Physiol; 2023 May; 192(2):1268-1288. PubMed ID: 36691698
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proteomics reveals the effects of drought stress on the kernel development and starch formation of waxy maize.
    Guo J; Qu L; Hu Y; Lu W; Lu D
    BMC Plant Biol; 2021 Sep; 21(1):434. PubMed ID: 34556041
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ds-Induced Alleles at the OPAQUE-2 Locus of Maize.
    Motto M; Marotta R; Di Fonzo N; Soave C; Salamini F
    Genetics; 1986 Jan; 112(1):121-33. PubMed ID: 17246309
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel, developmentally specific control of Ds transposition in maize.
    Eisses JF; Lafoe D; Scott LA; Weil CF
    Mol Gen Genet; 1997 Sep; 256(2):158-68. PubMed ID: 9349707
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of Zn accumulation and speciation in kernels of sweetcorn and maize differing in maturity.
    Cheah ZX; Kopittke PM; Scheckel KG; Noerpel MR; Bell MJ
    Ann Bot; 2020 Jan; 125(1):185-193. PubMed ID: 31678993
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kernel size-related genes revealed by an integrated eQTL analysis during early maize kernel development.
    Pang J; Fu J; Zong N; Wang J; Song D; Zhang X; He C; Fang T; Zhang H; Fan Y; Wang G; Zhao J
    Plant J; 2019 Apr; 98(1):19-32. PubMed ID: 30548709
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Abscisic Acid inhibition of endosperm cell division in cultured maize kernels.
    Myers PN; Setter TL; Madison JT; Thompson JF
    Plant Physiol; 1990 Nov; 94(3):1330-6. PubMed ID: 16667837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Morphology and ultrastructure of 11 barley shrunken endosperm mutants.
    Bosnes M; Harris E; Aigeltinger L; Olsen OA
    Theor Appl Genet; 1987 Jun; 74(2):177-87. PubMed ID: 24241562
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The distribution of phosphorus, carotenoids and tocochromanols in grains of four Chinese maize (Zea mays L.) varieties.
    Sun X; Ma L; Lux PE; Wang X; Stuetz W; Frank J; Liang J
    Food Chem; 2022 Jan; 367():130725. PubMed ID: 34390908
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitrogen-induced changes in the growth and metabolism of developing maize kernels grown in vitro.
    Singletary GW; Below FE
    Plant Physiol; 1990 Jan; 92(1):160-7. PubMed ID: 16667240
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A putative plant organelle RNA recognition protein gene is essential for maize kernel development.
    Chettoor AM; Yi G; Gomez E; Hueros G; Meeley RB; Becraft PW
    J Integr Plant Biol; 2015 Mar; 57(3):236-46. PubMed ID: 24985738
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Study of genetic models of maize kernel traits].
    Zhang HW; Kong FL
    Yi Chuan Xue Bao; 2000; 27(1):56-64. PubMed ID: 10883541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The enzymatic deficiency conditioned by the shrunken-1 mutations in maize.
    Chourey PS; Nelson OE
    Biochem Genet; 1976 Dec; 14(11-12):1041-55. PubMed ID: 1016220
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transgenic maize endosperm containing a milk protein has improved amino acid balance.
    Bicar EH; Woodman-Clikeman W; Sangtong V; Peterson JM; Yang SS; Lee M; Scott MP
    Transgenic Res; 2008 Feb; 17(1):59-71. PubMed ID: 17387628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Relationship of source and sink in determining kernel composition of maize.
    Seebauer JR; Singletary GW; Krumpelman PM; Ruffo ML; Below FE
    J Exp Bot; 2010; 61(2):511-9. PubMed ID: 19917600
    [TBL] [Abstract][Full Text] [Related]  

  • 37. QTLs and candidate genes for desiccation and abscisic acid content in maize kernels.
    Capelle V; Remoué C; Moreau L; Reyss A; Mahé A; Massonneau A; Falque M; Charcosset A; Thévenot C; Rogowsky P; Coursol S; Prioul JL
    BMC Plant Biol; 2010 Jan; 10():2. PubMed ID: 20047666
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discrimination of Maize Haploid Seeds from Hybrid Seeds Using Vis Spectroscopy and Support Vector Machine Method.
    Liu J; Guo TT; Li HC; Jia SQ; Yan YL; An D; Zhang Y; Chen SJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Nov; 35(11):3268-74. PubMed ID: 26978947
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing pigmented pericarp of maize kernels as possible source of resistance to fusarium ear rot, Fusarium spp. infection and fumonisin accumulation.
    Venturini G; Babazadeh L; Casati P; Pilu R; Salomoni D; Toffolatti SL
    Int J Food Microbiol; 2016 Jun; 227():56-62. PubMed ID: 27071055
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sugar utilization by developing wild type and shrunken-2 maize kernels.
    Cobb BG; Hannah LC
    Plant Physiol; 1986 Mar; 80(3):609-11. PubMed ID: 16664671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.