These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24419582)

  • 21. Relationship between Respiration and Photosynthesis in Guard Cell and Mesophyll Cell Protoplasts of Commelina communis L.
    Gautier H; Vavasseur A; Gans P; Lascève G
    Plant Physiol; 1991 Feb; 95(2):636-41. PubMed ID: 16668030
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolism of Abscisic Acid in Guard Cells of Vicia faba L. and Commelina communis L.
    Grantz DA; Ho TH; Uknes SJ; Cheeseman JM; Boyer JS
    Plant Physiol; 1985 May; 78(1):51-6. PubMed ID: 16664207
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparison of the kinetic properties of phosphoenolpyruvate carboxylase from guard-cell and mesophyll-cell protoplasts of Commelina communis.
    Donovan N; Gibb E; Donkin ME; Martin ES
    Planta; 1985 May; 164(1):115-20. PubMed ID: 24249509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Guard cells in albino leaf patches do not respond to photosynthetically active radiation, but are sensitive to blue light, CO2 and abscisic acid.
    Roelfsema MR; Konrad KR; Marten H; Psaras GK; Hartung W; Hedrich R
    Plant Cell Environ; 2006 Aug; 29(8):1595-605. PubMed ID: 16898020
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distribution of enzymes in mesophyll and parenchyma-sheath chloroplasts of maize leaves in relation to the C4-dicarboxylic acid pathway of photosynthesis.
    Slack CR; Hatch MD; Goodchild DJ
    Biochem J; 1969 Sep; 114(3):489-98. PubMed ID: 4309527
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The primary processes of photosystem II in purified guard-cell protoplasts and mesophyll-cell protoplasts from Commelina communis L.
    Hipkins MF; Fitzsimons PJ; Weyers JD
    Planta; 1983 Dec; 159(6):554-60. PubMed ID: 24258332
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous and independent effects of abscisic acid on stomata and the photosynthetic apparatus in whole leaves.
    Raschke K; Hedrich R
    Planta; 1985 Jan; 163(1):105-18. PubMed ID: 24249275
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The C-4 pathway in Pennisetum purpureum : III. Structure and photosynthesis.
    Coombs J; Baldry CW; Brown JE
    Planta; 1973 Jun; 110(2):121-9. PubMed ID: 24474339
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tobacco guard cells fix CO2 by both Rubisco and PEPcase while sucrose acts as a substrate during light-induced stomatal opening.
    Daloso DM; Antunes WC; Pinheiro DP; Waquim JP; Araújo WL; Loureiro ME; Fernie AR; Williams TC
    Plant Cell Environ; 2015 Nov; 38(11):2353-71. PubMed ID: 25871738
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Potassium Chloride as Stomatal Osmoticum in Allium cepa L., a Species Devoid of Starch in Guard Cells.
    Schnabl H; Raschke K
    Plant Physiol; 1980 Jan; 65(1):88-93. PubMed ID: 16661151
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Changes in labelling patterns after feeding Bryophyllum tubiflorum with (14)CO 2 at different moments during the light/dark period : II. Relations between malate content of the tissue and the labelling patterns after (14)CO 2 light fixation].
    Kluge M
    Planta; 1971 Mar; 98(1):20-30. PubMed ID: 24493305
    [TBL] [Abstract][Full Text] [Related]  

  • 32. How Do Stomata Read Abscisic Acid Signals?
    Trejo CL; Clephan AL; Davies WJ
    Plant Physiol; 1995 Nov; 109(3):803-811. PubMed ID: 12228634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rubisco activity in guard cells compared with the solute requirement for stomatal opening.
    Reckmann U; Scheibe R; Raschke K
    Plant Physiol; 1990 Jan; 92(1):246-53. PubMed ID: 16667255
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proton-stimulated opening of stomata in relation to chloride uptake by guard cells.
    Dittrich P; Mayer M; Meusel M
    Planta; 1979 Jan; 144(4):305-9. PubMed ID: 24407318
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of malate synthesis mediated by phosphoenolpyruvate carboxylase in guard cells in the regulation of stomatal movement.
    Asai N; Nakajima N; Tamaoki M; Kamada H; Kondo N
    Plant Cell Physiol; 2000 Jan; 41(1):10-5. PubMed ID: 10750703
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stomatal movement and potassium transport in epidermal strips of Zea mays: The effect of CO2.
    Pallaghy CK
    Planta; 1971 Dec; 101(4):287-95. PubMed ID: 24488473
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A study of potassium gradients in the epidermis of intact leaves of Commelina communis L. in relation to stomatal opening.
    Penny MG; Bowling DJ
    Planta; 1974 Mar; 119(1):17-25. PubMed ID: 24442405
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stomatal closure in response to xanthoxin and abscisic acid.
    Raschke K; Firn RD; Pierce M
    Planta; 1975 Jan; 125(2):149-60. PubMed ID: 24435339
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for the presence of the reductive pentose phosphate cycle in a filamentous anoxygenic photosynthetic bacterium, Oscillochloris trichoides strain DG-6.
    Ivanovsky RN; Fal YI; Berg IA; Ugolkova NV; Krasilnikova EN; Keppen OI; Zakharchuc LM; Zyakun AM
    Microbiology (Reading); 1999 Jul; 145 ( Pt 7)():1743-1748. PubMed ID: 10439413
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of hydrogen peroxide on CO2 fixation of isolated intact chloroplasts.
    Kaiser W
    Biochim Biophys Acta; 1976 Sep; 440(3):476-82. PubMed ID: 963040
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.