These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 24419770)
1. Immunochemical quantification of cytochrome f in leaves of a non-yellowing senescence mutant of Festuca pratensis. Davies TG; Thomas H; Rogers LJ Photosynth Res; 1990 Apr; 24(1):99-108. PubMed ID: 24419770 [TBL] [Abstract][Full Text] [Related]
2. Chlorophyll breakdown in senescent leaves identification of the biochemical lesion in a stay-green genotype of Festuca pratensis Huds. Vicentini F; Hörtensteiner S; Schellenberg M; Thomas H; Matile P New Phytol; 1995 Feb; 129(2):247-252. PubMed ID: 33874551 [TBL] [Abstract][Full Text] [Related]
3. Leaf senescence in a non-yellowing mutant of Festuca pratensis : I. Chloroplast membrane polypeptides. Thomas H Planta; 1982 May; 154(3):212-8. PubMed ID: 24276063 [TBL] [Abstract][Full Text] [Related]
4. Leaf senescence in a non-yellowing mutant of Festuca pratensis Huds. : Oxidative chlorophyll bleaching by thylakoid membranes during senescence. Thomas H; Lüthy B; Matile P Planta; 1985 Jun; 164(3):400-5. PubMed ID: 24249611 [TBL] [Abstract][Full Text] [Related]
5. Leaf Senescence in a Nonyellowing Mutant of Festuca pratensis: Metabolism of Cytochrome f. Davies TG; Thomas H; Thomas BJ; Rogers LJ Plant Physiol; 1990 Jun; 93(2):588-95. PubMed ID: 16667508 [TBL] [Abstract][Full Text] [Related]
6. Leaf senescence in a non-yellowing mutant of Festuca pratensis : III. Total acyl lipids of leaf tissue during senescence. Harwood JL; Jones AV; Thomas H Planta; 1982 Nov; 156(2):152-7. PubMed ID: 24272310 [TBL] [Abstract][Full Text] [Related]
7. Leaf senescence in a non-yellowing mutant of Festuca pratensis : II. Proteolytic degradation of thylakoid and stroma polypeptides. Thomas H Planta; 1982 May; 154(3):219-23. PubMed ID: 24276064 [TBL] [Abstract][Full Text] [Related]
8. Sid: a Mendelian locus controlling thylakoid membrane disassembly in senescing leaves of Festuca pratensis. Thomas H Theor Appl Genet; 1987 Feb; 73(4):551-5. PubMed ID: 24241112 [TBL] [Abstract][Full Text] [Related]
9. Leaf senescence in a non-yellowing mutant of Festuca pratensis: Proteins of photosystem II. Hilditch PI; Thomas H; Thomas BJ; Rogers LJ Planta; 1989 Feb; 177(2):265-72. PubMed ID: 24212349 [TBL] [Abstract][Full Text] [Related]
10. Nucleic acids from leaves of a yellowing and a non-yellowing variety of Festuca pratensis Huds. Pearson JA; Thomas K; Thomas H Planta; 1978 Jan; 144(1):85-7. PubMed ID: 24408648 [TBL] [Abstract][Full Text] [Related]
11. Leaf senescence in a non-yellowing mutant of Festuca pratensis: Photosynthesis and photosynthetic electron transport. Hilditch P; Thomas H; Rogers L Planta; 1986 Jan; 167(1):146-51. PubMed ID: 24241745 [TBL] [Abstract][Full Text] [Related]
12. Ultrastructure, polypeptide composition and photochemical activity of chloroplasts during foliar senescence of a non-yellowing mutant genotype of Festuca pratensis Huds. Thomas H Planta; 1977 Jan; 137(1):53-60. PubMed ID: 24420518 [TBL] [Abstract][Full Text] [Related]
13. Separation of Chlorophyll Degradation from Other Senescence Processes in Leaves of a Mutant Genotype of Meadow Fescue (Festuca pratensis L.). Thomas H; Stoddart JL Plant Physiol; 1975 Sep; 56(3):438-41. PubMed ID: 16659320 [TBL] [Abstract][Full Text] [Related]
14. What stay-green mutants tell us about nitrogen remobilization in leaf senescence. Thomas H; Ougham H; Canter P; Donnison I J Exp Bot; 2002 Apr; 53(370):801-8. PubMed ID: 11912223 [TBL] [Abstract][Full Text] [Related]
15. Effects of elevated ultraviolet radiation and endophytic fungi on plant growth and insect feeding in Lolium perenne, Festuca rubra, F. arundinacea and F. pratensis. McLeod AR; Rey A; Newsham KK; Lewis GC; Wolferstam P J Photochem Photobiol B; 2001 Sep; 62(1-2):97-107. PubMed ID: 11693372 [TBL] [Abstract][Full Text] [Related]
16. Nondestructive analysis of senescence in mesophyll cells by spectral resolution of protein synthesis-dependent pigment metabolism. Gay A; Thomas H; Roca M; James C; Taylor J; Rowland J; Ougham H New Phytol; 2008; 179(3):663-674. PubMed ID: 18346109 [TBL] [Abstract][Full Text] [Related]
17. Analysis of the chlorophyll catabolism pathway in leaves of an introgression senescence mutant of Lolium temulentum. Roca M; James C; Pruzinská A; Hörtensteiner S; Thomas H; Ougham H Phytochemistry; 2004 May; 65(9):1231-8. PubMed ID: 15184007 [TBL] [Abstract][Full Text] [Related]
18. Abiotic stresses influence the transcript abundance of PIP and TIP aquaporins in Festuca species. Pawłowicz I; Rapacz M; Perlikowski D; Gondek K; Kosmala A J Appl Genet; 2017 Nov; 58(4):421-435. PubMed ID: 28779288 [TBL] [Abstract][Full Text] [Related]
19. Differential expression of XET-related genes in the leaf elongation zone of F. pratensis. Reidy B; Nösberger J; Fleming A J Exp Bot; 2001 Sep; 52(362):1847-56. PubMed ID: 11520873 [TBL] [Abstract][Full Text] [Related]
20. Establishment of a native bunch grass and an invasive perennial on disturbed land using straw-amended soil. Desserud P; Naeth MA J Environ Manage; 2013 Jan; 114():540-7. PubMed ID: 23182519 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]