BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 24419799)

  • 21. Coupling xylitol dehydrogenase with NADH oxidase improves l-xylulose production in Escherichia coli culture.
    Han Q; Eiteman MA
    Enzyme Microb Technol; 2017 Nov; 106():106-113. PubMed ID: 28859803
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Boost in bioethanol production using recombinant Saccharomyces cerevisiae with mutated strictly NADPH-dependent xylose reductase and NADP(+)-dependent xylitol dehydrogenase.
    Khattab SM; Saimura M; Kodaki T
    J Biotechnol; 2013 Jun; 165(3-4):153-6. PubMed ID: 23578809
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect on product formation in recombinant Saccharomyces cerevisiae strains expressing different levels of xylose metabolic genes.
    Bao X; Gao D; Qu Y; Wang Z; Walfridssion M; Hahn-Hagerbal B
    Chin J Biotechnol; 1997; 13(4):225-31. PubMed ID: 9631257
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Directed evolution of a second xylitol catabolic pathway in Klebsiella pneumoniae.
    Doten RC; Mortlock RP
    J Bacteriol; 1984 Aug; 159(2):730-5. PubMed ID: 6378891
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of bio-xylitol from D-xylose by an engineered Pichia pastoris expressing a recombinant xylose reductase did not require any auxiliary substrate as electron donor.
    Louie TM; Louie K; DenHartog S; Gopishetty S; Subramanian M; Arnold M; Das S
    Microb Cell Fact; 2021 Feb; 20(1):50. PubMed ID: 33618706
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae.
    Jin YS; Jeffries TW
    Appl Biochem Biotechnol; 2003; 105 -108():277-86. PubMed ID: 12721451
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Metabolic engineering for improving ethanol fermentation of xylose by wild yeast].
    Zhang L; Zhang L; Ding Z; Wang Z; Shi G
    Sheng Wu Gong Cheng Xue Bao; 2008 Jun; 24(6):950-6. PubMed ID: 18807975
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cloning and functional characterization of xylitol dehydrogenase genes from Issatchenkia orientalis and Torulaspora delbrueckii.
    Han X; Hu X; Zhou C; Wang H; Li Q; Ouyang Y; Kuang X; Xiao D; Xiang Q; Yu X; Li X; Gu Y; Zhao K; Chen Q; Ma M
    J Biosci Bioeng; 2020 Jul; 130(1):29-35. PubMed ID: 32171656
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae.
    Karhumaa K; Fromanger R; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2007 Jan; 73(5):1039-46. PubMed ID: 16977466
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae.
    Krahulec S; Klimacek M; Nidetzky B
    Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Xylitol production by NAD(+)-dependent xylitol dehydrogenase (xdhA)- and l-arabitol-4-dehydrogenase (ladA)-disrupted mutants of Aspergillus oryzae.
    Mahmud A; Hattori K; Hongwen C; Kitamoto N; Suzuki T; Nakamura K; Takamizawa K
    J Biosci Bioeng; 2013 Apr; 115(4):353-9. PubMed ID: 23287496
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cloning and expression of a xylitol-4-dehydrogenase gene from Pantoea ananatis.
    Aarnikunnas JS; Pihlajaniemi A; Palva A; Leisola M; Nyyssölä A
    Appl Environ Microbiol; 2006 Jan; 72(1):368-77. PubMed ID: 16391066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic engineering of Saccharomyces cerevisiae for conversion of D-glucose to xylitol and other five-carbon sugars and sugar alcohols.
    Toivari MH; Ruohonen L; Miasnikov AN; Richard P; Penttilä M
    Appl Environ Microbiol; 2007 Sep; 73(17):5471-6. PubMed ID: 17630301
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Impacts of high β-galactosidase expression on central metabolism of recombinant Pichia pastoris GS115 using glucose as sole carbon source via (13)C metabolic flux analysis.
    Nie Y; Huang M; Lu J; Qian J; Lin W; Chu J; Zhuang Y; Zhang S
    J Biotechnol; 2014 Oct; 187():124-34. PubMed ID: 25058396
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.
    Sakamoto T; Hasunuma T; Hori Y; Yamada R; Kondo A
    J Biotechnol; 2012 Apr; 158(4):203-10. PubMed ID: 21741417
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase (GRE3), xylitol dehydrogenase (XYL2), and xylulokinase (XYL3) from Scheffersomyces stipitis.
    Kim SR; Kwee NR; Kim H; Jin YS
    FEMS Yeast Res; 2013 May; 13(3):312-21. PubMed ID: 23398717
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic analysis of D-xylose metabolism pathways in Gluconobacter oxydans 621H.
    Zhang M; Wei L; Zhou Y; Du L; Imanaka T; Hua Q
    J Ind Microbiol Biotechnol; 2013 Apr; 40(3-4):379-88. PubMed ID: 23381123
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic engineering and classical selection of the methylotrophic thermotolerant yeast Hansenula polymorpha for improvement of high-temperature xylose alcoholic fermentation.
    Kurylenko OO; Ruchala J; Hryniv OB; Abbas CA; Dmytruk KV; Sibirny AA
    Microb Cell Fact; 2014 Aug; 13():122. PubMed ID: 25145644
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain.
    Katahira S; Mizuike A; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1136-43. PubMed ID: 16575564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.