These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 24419960)

  • 1. Microbial leaching of lateritic nickel ore.
    Sukla LB; Panchanadikar VV; Kar RN
    World J Microbiol Biotechnol; 1993 Mar; 9(2):255-7. PubMed ID: 24419960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioleaching of nickel and cobalt from lateritic chromite overburden using the culture filtrate of Aspergillus niger.
    Biswas S; Dey R; Mukherjee S; Banerjee PC
    Appl Biochem Biotechnol; 2013 Aug; 170(7):1547-59. PubMed ID: 23700146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beneficiation of iron ore slime using Aspergillus niger and Bacillus circulans.
    Pradhan N; Das B; Gahan CS; Kar RN; Sukla LB
    Bioresour Technol; 2006 Oct; 97(15):1876-9. PubMed ID: 16531043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial leaching of a sulfide ore by Thiobacillus ferrooxidans and Thiobacillus thiooxidans: I. Shake flask studies.
    Lizama HM; Suzuki I
    Biotechnol Bioeng; 1988 Jun; 32(1):110-6. PubMed ID: 18584725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraction of nickel by microbial reduction of lateritic chromite overburden of Sukinda, India.
    Behera SK; Panda SK; Pradhan N; Sukla LB; Mishra BK
    Bioresour Technol; 2012 Dec; 125():17-22. PubMed ID: 23018159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Microbiological leaching of zinc and lead ores of the Tekeli deposit].
    Ilialetdinov AN; Kamalov MR; Stukanov VA
    Mikrobiologiia; 1977; 46(5):857-66. PubMed ID: 600089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore.
    Wakeman K; Auvinen H; Johnson DB
    Biotechnol Bioeng; 2008 Nov; 101(4):739-50. PubMed ID: 18496880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial processing of apatite rich low grade Indian uranium ore in bioreactor.
    Abhilash ; Pandey BD
    Bioresour Technol; 2013 Jan; 128():619-23. PubMed ID: 23211489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and bioleaching of nickel laterite ore using Bacillus subtilis strain.
    Giese EC; Carpen HL; Bertolino LC; Schneider CL
    Biotechnol Prog; 2019 Nov; 35(6):e2860. PubMed ID: 31152492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioleaching of cadmium and nickel from synthetic sediments by Acidithiobacillus ferrooxidans.
    Kim SD; Bae JE; Park HS; Cha DK
    Environ Geochem Health; 2005 Sep; 27(3):229-35. PubMed ID: 16059779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraction of copper from an oxidized (lateritic) ore using bacterially catalysed reductive dissolution.
    Nancucheo I; Grail BM; Hilario F; du Plessis C; Johnson DB
    Appl Microbiol Biotechnol; 2014; 98(14):6297-305. PubMed ID: 24687752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbiological Leaching of Metallic Sulfides.
    Razzell WE; Trussell PC
    Appl Microbiol; 1963 Mar; 11(2):105-10. PubMed ID: 16349627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ferrous Iron and Sulfur Oxidation and Ferric Iron Reduction Activities of Thiobacillus ferrooxidans Are Affected by Growth on Ferrous Iron, Sulfur, or a Sulfide Ore.
    Suzuki I; Takeuchi TL; Yuthasastrakosol TD; Oh JK
    Appl Environ Microbiol; 1990 Jun; 56(6):1620-6. PubMed ID: 16348205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximization of organic acids production by Aspergillus niger in a bubble column bioreactor for V and Ni recovery enhancement from power plant residual ash in spent-medium bioleaching experiments.
    Rasoulnia P; Mousavi SM
    Bioresour Technol; 2016 Sep; 216():729-36. PubMed ID: 27295250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Role of Thiobacillus ferrooxidans in leaching Ni, Cu, Co, Fe, Al, aMg and Ca from the ores of copper-nickel deposits].
    Moshniakova SA; Karavaĭko GI; Shchetinina EV
    Mikrobiologiia; 1971; 40(6):1100-7. PubMed ID: 5130742
    [No Abstract]   [Full Text] [Related]  

  • 16. Role of Bacillus licheniformis in phytoremediation of nickel contaminated soil cultivated with rice.
    Jamil M; Zeb S; Anees M; Roohi A; Ahmed I; ur Rehman S; Rha ES
    Int J Phytoremediation; 2014; 16(6):554-71. PubMed ID: 24912242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of solids concentration on bacterial leaching of heavy metals from sewage sludge.
    Cho KS; Ryu HW; Lee IS; Choi HM
    J Air Waste Manag Assoc; 2002 Feb; 52(2):237-43. PubMed ID: 15143798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leaching of a silicate and carbonate copper ore with heterotrophic fungi and bacteria, producing organic acids.
    Kiel H; Schwartz W
    Z Allg Mikrobiol; 1980; 20(10):627-36. PubMed ID: 7222743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact assessment of chromite mining on groundwater through simulation modeling study in Sukinda chromite mining area, Orissa, India.
    Dhakate R; Singh VS; Hodlur GK
    J Hazard Mater; 2008 Dec; 160(2-3):535-47. PubMed ID: 18450374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extraction of Copper from Malanjkhand Low-Grade Ore by Bacillus stearothermophilus.
    Singh S; Sukla LB; Mishra BK
    Indian J Microbiol; 2011 Oct; 51(4):477-81. PubMed ID: 23024410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.