These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 24419960)

  • 21. Ferrous iron oxidation and uranium extraction by Thiobacillus ferrooxidans.
    Guay R; Silver M; Torma AE
    Biotechnol Bioeng; 1977 May; 19(5):727-40. PubMed ID: 857953
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a laboratory-scale leaching plant for metal extraction from fly ash by thiobacillus strains.
    Brombacher C; Bachofen R; Brandl H
    Appl Environ Microbiol; 1998 Apr; 64(4):1237-41. PubMed ID: 16349536
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simultaneous recovery of vanadium and nickel from power plant fly-ash: optimization of parameters using response surface methodology.
    Nazari E; Rashchi F; Saba M; Mirazimi SM
    Waste Manag; 2014 Dec; 34(12):2687-96. PubMed ID: 25269818
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioleaching of iron from laterite soil using an isolated Acidithiobacillus ferrooxidans strain and application of leached laterite iron as Fenton's catalyst in selective herbicide degradation.
    S B; Manu B; M Y S
    PLoS One; 2021; 16(3):e0243444. PubMed ID: 33784303
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bacterial community in copper sulfide ores inoculated and leached with solution from a commercial-scale copper leaching plant.
    Espejo RT; Romero J
    Appl Environ Microbiol; 1997 Apr; 63(4):1344-8. PubMed ID: 16535570
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Leaching and aging decrease nickel toxicity to soil microbial processes in soils freshly spiked with nickel chloride.
    Oorts K; Ghesquiere U; Smolders E
    Environ Toxicol Chem; 2007 Jun; 26(6):1130-8. PubMed ID: 17571677
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of Leptospirillum ferrooxidans for Leaching.
    Sand W; Rohde K; Sobotke B; Zenneck C
    Appl Environ Microbiol; 1992 Jan; 58(1):85-92. PubMed ID: 16348642
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioleaching of gold, copper and nickel from waste cellular phone PCBs and computer goldfinger motherboards by two Aspergillus nigerstrains.
    Madrigal-Arias JE; Argumedo-Delira R; Alarcón A; Mendoza-López MR; García-Barradas O; Cruz-Sánchez JS; Ferrera-Cerrato R; Jiménez-Fernández M
    Braz J Microbiol; 2015; 46(3):707-13. PubMed ID: 26413051
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dephosphorization of High-Phosphorus Iron Ore Using Different Sources of Aspergillus niger Strains.
    Xiao C; Wu X; Chi R
    Appl Biochem Biotechnol; 2015 May; 176(2):518-28. PubMed ID: 25822597
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Countercurrent leaching of Ni, Co, Mn, and Li from spent lithium-ion batteries.
    Jian Y; Yanqing L; Fangyang L; Ming J; Liangxing J
    Waste Manag Res; 2020 Dec; 38(12):1358-1366. PubMed ID: 32720588
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formate supplementation can increase nickel recovery by Halothiobacillus halophilus.
    Vainshtein M; Abashina T; Bykov A; Repina A; Kaparullina E
    World J Microbiol Biotechnol; 2015 Mar; 31(3):535-7. PubMed ID: 25613548
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Process development for recovery of vanadium and nickel from an industrial solid waste by a leaching-solvent extraction technique.
    Barik SP; Park KH; Nam CW
    J Environ Manage; 2014 Dec; 146():22-28. PubMed ID: 25156262
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental study on radon exhalation behavior of heap leaching uranium ore column with dilute sulfuric acid.
    Ye Y; Wang Z; Liang T; Ding D; Feng S; Zhong Y
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20308-20315. PubMed ID: 31093918
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioleaching of manganese from a low-grade pyrolusite ore using Aspergillus niger: Process optimization and kinetic studies.
    Keshavarz S; Faraji F; Rashchi F; Mokmeli M
    J Environ Manage; 2021 May; 285():112153. PubMed ID: 33607567
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thiobacillus cuprinus sp. nov., a Novel Facultatively Organotrophic Metal-Mobilizing Bacterium.
    Huber H; Stetter KO
    Appl Environ Microbiol; 1990 Feb; 56(2):315-22. PubMed ID: 16348110
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioleaching of copper from chalcopyrite ore by fungi.
    Rao DV; Shivannavar CT; Gaddad SM
    Indian J Exp Biol; 2002 Mar; 40(3):319-24. PubMed ID: 12635703
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge.
    Bayat B; Sari B
    J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of anions on selective solubilization of zinc and copper in bacterial leaching of sulfide ores.
    Harahuc L; Lizama HM; Suzuki I
    Biotechnol Bioeng; 2000 Jul; 69(2):196-203. PubMed ID: 10861398
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemolithotrophic bacteria in copper ores leached at high sulfuric Acid concentration.
    Vasquez M; Espejo RT
    Appl Environ Microbiol; 1997 Jan; 63(1):332-4. PubMed ID: 16535497
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions.
    Fowler TA; Crundwell FK
    Appl Environ Microbiol; 1999 Dec; 65(12):5285-92. PubMed ID: 10583978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.