These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 24420005)
21. Nanofibrous scaffold from self-assembly of beta-sheet peptides containing phenylalanine for controlled release. Zhao Y; Tanaka M; Kinoshita T; Higuchi M; Tan T J Control Release; 2010 Mar; 142(3):354-60. PubMed ID: 19932721 [TBL] [Abstract][Full Text] [Related]
22. Mechanics of single peptide hydrogelator fibrils. Li Y; Sun Y; Qin M; Cao Y; Wang W Nanoscale; 2015 Mar; 7(13):5638-42. PubMed ID: 25760017 [TBL] [Abstract][Full Text] [Related]
23. Neural progenitor cells survival and neuronal differentiation in peptide-based hydrogels. Song Y; Li Y; Zheng Q; Wu K; Guo X; Wu Y; Yin M; Wu Q; Fu X J Biomater Sci Polym Ed; 2011; 22(4-6):475-87. PubMed ID: 20566041 [TBL] [Abstract][Full Text] [Related]
24. Enzyme-Instructed Self-Assembly (EISA) and Hydrogelation of Peptides. Gao J; Zhan J; Yang Z Adv Mater; 2020 Jan; 32(3):e1805798. PubMed ID: 31018025 [TBL] [Abstract][Full Text] [Related]
25. Sequence-Dependent Structural Stability of Self-Assembled Cylindrical Nanofibers by Peptide Amphiphiles. Fu IW; Nguyen HD Biomacromolecules; 2015 Jul; 16(7):2209-19. PubMed ID: 26068113 [TBL] [Abstract][Full Text] [Related]
26. Instant Hydrogelation Inspired by Inflammasomes. Wang H; Feng Z; Lu A; Jiang Y; Wu H; Xu B Angew Chem Int Ed Engl; 2017 Jun; 56(26):7579-7583. PubMed ID: 28481474 [TBL] [Abstract][Full Text] [Related]
27. A novel nanostructured supramolecular hydrogel self-assembled from tetraphenylethylene-capped dipeptides. Yeh MY; Huang CW; Chang JW; Huang YT; Lin JH; Hsu SM; Hung SC; Lin HC Soft Matter; 2016 Aug; 12(30):6347-51. PubMed ID: 27381445 [TBL] [Abstract][Full Text] [Related]
28. Supramolecular hydrogels based on short peptides linked with conformational switch. Huang Y; Qiu Z; Xu Y; Shi J; Lin H; Zhang Y Org Biomol Chem; 2011 Apr; 9(7):2149-55. PubMed ID: 21298187 [TBL] [Abstract][Full Text] [Related]
29. The role of electrostatics and temperature on morphological transitions of hydrogel nanostructures self-assembled by peptide amphiphiles via molecular dynamics simulations. Fu IW; Markegard CB; Chu BK; Nguyen HD Adv Healthc Mater; 2013 Oct; 2(10):1388-400. PubMed ID: 23554376 [TBL] [Abstract][Full Text] [Related]
30. Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications. Fichman G; Gazit E Acta Biomater; 2014 Apr; 10(4):1671-82. PubMed ID: 23958781 [TBL] [Abstract][Full Text] [Related]
31. Stiff, multistimuli-responsive supramolecular hydrogels as unique molds for 2D/3D microarchitectures of live cells. Komatsu H; Tsukiji S; Ikeda M; Hamachi I Chem Asian J; 2011 Sep; 6(9):2368-75. PubMed ID: 21721133 [TBL] [Abstract][Full Text] [Related]
32. Self-Assembling Hydrogels Based on a Complementary Host-Guest Peptide Amphiphile Pair. Redondo-Gómez C; Abdouni Y; Becer CR; Mata A Biomacromolecules; 2019 Jun; 20(6):2276-2285. PubMed ID: 31067405 [TBL] [Abstract][Full Text] [Related]
33. Self-assembly of peptide-amphiphile forming helical nanofibers and in situ template synthesis of uniform mesoporous single wall silica nanotubes. Ahmed S; Mondal JH; Behera N; Das D Langmuir; 2013 Nov; 29(46):14274-83. PubMed ID: 24128085 [TBL] [Abstract][Full Text] [Related]
34. Peptide nanofibers with dynamic instability through nonequilibrium biocatalytic assembly. Debnath S; Roy S; Ulijn RV J Am Chem Soc; 2013 Nov; 135(45):16789-92. PubMed ID: 24147566 [TBL] [Abstract][Full Text] [Related]
35. Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide. Pochan DJ; Schneider JP; Kretsinger J; Ozbas B; Rajagopal K; Haines L J Am Chem Soc; 2003 Oct; 125(39):11802-3. PubMed ID: 14505386 [TBL] [Abstract][Full Text] [Related]
36. Functionalized self-assembling peptide nanofiber hydrogels mimic stem cell niche to control human adipose stem cell behavior in vitro. Liu X; Wang X; Wang X; Ren H; He J; Qiao L; Cui FZ Acta Biomater; 2013 Jun; 9(6):6798-805. PubMed ID: 23380207 [TBL] [Abstract][Full Text] [Related]
37. Branched peptides for enzymatic supramolecular hydrogelation. He H; Wang H; Zhou N; Yang D; Xu B Chem Commun (Camb); 2017 Dec; 54(1):86-89. PubMed ID: 29211067 [TBL] [Abstract][Full Text] [Related]
38. Aromatic-Aromatic Interactions Enable α-Helix to β-Sheet Transition of Peptides to Form Supramolecular Hydrogels. Li J; Du X; Hashim S; Shy A; Xu B J Am Chem Soc; 2017 Jan; 139(1):71-74. PubMed ID: 27997165 [TBL] [Abstract][Full Text] [Related]
39. Cell differentiation on disk- and string-shaped hydrogels fabricated from Ca(2+) -responsive self-assembling peptides. Fukunaga K; Tsutsumi H; Mihara H Biopolymers; 2016 Nov; 106(4):476-83. PubMed ID: 26501895 [TBL] [Abstract][Full Text] [Related]