These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24420026)

  • 1. Prediction of free energies of hydration with COSMO-RS on the SAMPL4 data set.
    Reinisch J; Klamt A
    J Comput Aided Mol Des; 2014 Mar; 28(3):169-73. PubMed ID: 24420026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blind prediction test of free energies of hydration with COSMO-RS.
    Klamt A; Diedenhofen M
    J Comput Aided Mol Des; 2010 Apr; 24(4):357-60. PubMed ID: 20383653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of free energies of hydration with COSMO-RS on the SAMPL3 data set.
    Reinisch J; Klamt A; Diedenhofen M
    J Comput Aided Mol Des; 2012 May; 26(5):669-73. PubMed ID: 22581451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Some conclusions regarding the predictions of tautomeric equilibria in solution based on the SAMPL2 challenge.
    Klamt A; Diedenhofen M
    J Comput Aided Mol Des; 2010 Jun; 24(6-7):621-5. PubMed ID: 20376531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extended solvent-contact model approach to SAMPL4 blind prediction challenge for hydration free energies.
    Park H
    J Comput Aided Mol Des; 2014 Mar; 28(3):175-86. PubMed ID: 24554191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fast prediction of hydration free energies for SAMPL4 blind test from a classical density functional theory.
    Fu J; Liu Y; Wu J
    J Comput Aided Mol Des; 2014 Mar; 28(3):299-304. PubMed ID: 24622881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. COSMO-RS based predictions for the SAMPL6 logP challenge.
    Loschen C; Reinisch J; Klamt A
    J Comput Aided Mol Des; 2020 Apr; 34(4):385-392. PubMed ID: 31773462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. COSMO-RS predictions of logP in the SAMPL7 blind challenge.
    Warnau J; Wichmann K; Reinisch J
    J Comput Aided Mol Des; 2021 Jul; 35(7):813-818. PubMed ID: 34125358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting hydration free energies with chemical accuracy: the SAMPL4 challenge.
    Sandberg L
    J Comput Aided Mol Des; 2014 Mar; 28(3):211-9. PubMed ID: 24550133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting hydration free energies with a hybrid QM/MM approach: an evaluation of implicit and explicit solvation models in SAMPL4.
    König G; Pickard FC; Mei Y; Brooks BR
    J Comput Aided Mol Des; 2014 Mar; 28(3):245-57. PubMed ID: 24504703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient calculation of SAMPL4 hydration free energies using OMEGA, SZYBKI, QUACPAC, and Zap TK.
    Ellingson BA; Geballe MT; Wlodek S; Bayly CI; Skillman AG; Nicholls A
    J Comput Aided Mol Des; 2014 Mar; 28(3):289-98. PubMed ID: 24633516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blind prediction of solvation free energies from the SAMPL4 challenge.
    Mobley DL; Wymer KL; Lim NM; Guthrie JP
    J Comput Aided Mol Des; 2014 Mar; 28(3):135-50. PubMed ID: 24615156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benchmarking Different QM Levels for Usage with COSMO-RS.
    Reinisch J; Diedenhofen M; Wilcken R; Udvarhelyi A; Glöß A
    J Chem Inf Model; 2019 Nov; 59(11):4806-4813. PubMed ID: 31692342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of the IEF-MST solvation continuum model in a blind test prediction of hydration free energies.
    Soteras I; Forti F; Orozco M; Luque FJ
    J Phys Chem B; 2009 Jul; 113(27):9330-4. PubMed ID: 19534454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extensive all-atom Monte Carlo sampling and QM/MM corrections in the SAMPL4 hydration free energy challenge.
    Genheden S; Cabedo Martinez AI; Criddle MP; Essex JW
    J Comput Aided Mol Des; 2014 Mar; 28(3):187-200. PubMed ID: 24488307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of hydration free energies for the SAMPL4 data set with the AMOEBA polarizable force field.
    Manzoni F; Söderhjelm P
    J Comput Aided Mol Des; 2014 Mar; 28(3):235-44. PubMed ID: 24577872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of cyclohexane-water distribution coefficients with COSMO-RS on the SAMPL5 data set.
    Klamt A; Eckert F; Reinisch J; Wichmann K
    J Comput Aided Mol Des; 2016 Nov; 30(11):959-967. PubMed ID: 27460058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computation of Hydration Free Energies Using the Multiple Environment Single System Quantum Mechanical/Molecular Mechanical Method.
    König G; Mei Y; Pickard FC; Simmonett AC; Miller BT; Herbert JM; Woodcock HL; Brooks BR; Shao Y
    J Chem Theory Comput; 2016 Jan; 12(1):332-44. PubMed ID: 26613419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of the IEF-MST solvation continuum model in the SAMPL2 blind test prediction of hydration and tautomerization free energies.
    Soteras I; Orozco M; Luque FJ
    J Comput Aided Mol Des; 2010 Apr; 24(4):281-91. PubMed ID: 20300801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blind prediction of cyclohexane-water distribution coefficients from the SAMPL5 challenge.
    Bannan CC; Burley KH; Chiu M; Shirts MR; Gilson MK; Mobley DL
    J Comput Aided Mol Des; 2016 Nov; 30(11):927-944. PubMed ID: 27677750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.