These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 24420036)

  • 1. Bacterial and chemical leaching pattern on copper ores of sandstone and limestone type.
    Ostrowski M; Skłodowska A
    World J Microbiol Biotechnol; 1993 May; 9(3):328-31. PubMed ID: 24420036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial community in copper sulfide ores inoculated and leached with solution from a commercial-scale copper leaching plant.
    Espejo RT; Romero J
    Appl Environ Microbiol; 1997 Apr; 63(4):1344-8. PubMed ID: 16535570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Microbiological leaching of zinc and lead ores of the Tekeli deposit].
    Ilialetdinov AN; Kamalov MR; Stukanov VA
    Mikrobiologiia; 1977; 46(5):857-66. PubMed ID: 600089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioleaching of copper from chalcopyrite ore by fungi.
    Rao DV; Shivannavar CT; Gaddad SM
    Indian J Exp Biol; 2002 Mar; 40(3):319-24. PubMed ID: 12635703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial populations in samples of bioleached copper ore as revealed by analysis of DNA obtained before and after cultivation.
    Pizarro J; Jedlicki E; Orellana O; Romero J; Espejo RT
    Appl Environ Microbiol; 1996 Apr; 62(4):1323-8. PubMed ID: 8919792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial leaching patterns on pyrite crystal surfaces.
    Bennett JC; Tributsch H
    J Bacteriol; 1978 Apr; 134(1):310-7. PubMed ID: 649567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneously enhance iron/sulfur metabolism in column bioleaching of chalcocite by pyrite and sulfur oxidizers based on joint utilization of waste resource.
    Feng S; Yin Y; Yin Z; Zhang H; Zhu D; Tong Y; Yang H
    Environ Res; 2021 Mar; 194():110702. PubMed ID: 33400950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective bioleaching of low-grade copper ores: Insights from microbial cross experiments.
    Wang X; Ma L; Wu J; Xiao Y; Tao J; Liu X
    Bioresour Technol; 2020 Jul; 308():123273. PubMed ID: 32247948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite.
    Li Y; Kawashima N; Li J; Chandra AP; Gerson AR
    Adv Colloid Interface Sci; 2013 Sep; 197-198():1-32. PubMed ID: 23791420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of anions on selective solubilization of zinc and copper in bacterial leaching of sulfide ores.
    Harahuc L; Lizama HM; Suzuki I
    Biotechnol Bioeng; 2000 Jul; 69(2):196-203. PubMed ID: 10861398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiobacillus cuprinus sp. nov., a Novel Facultatively Organotrophic Metal-Mobilizing Bacterium.
    Huber H; Stetter KO
    Appl Environ Microbiol; 1990 Feb; 56(2):315-22. PubMed ID: 16348110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced "contact mechanism" for interaction of extracellular polymeric substances with low-grade copper-bearing sulfide ore in bioleaching by moderately thermophilic Acidithiobacillus caldus.
    Huang Z; Feng S; Tong Y; Yang H
    J Environ Manage; 2019 Jul; 242():11-21. PubMed ID: 31026798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbiological Leaching of Metallic Sulfides.
    Razzell WE; Trussell PC
    Appl Microbiol; 1963 Mar; 11(2):105-10. PubMed ID: 16349627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Column Bioleaching of Fluoride-Containing Secondary Copper Sulfide Ores: Experiments With
    Rodrigues MLM; Santos GHA; Leôncio HC; Leão VA
    Front Bioeng Biotechnol; 2018; 6():183. PubMed ID: 30834244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite.
    Romo E; Weinacker DF; Zepeda AB; Figueroa CA; Chavez-Crooker P; Farias JG
    Braz J Microbiol; 2013; 44(2):523-8. PubMed ID: 24294251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of staged bioleaching of low-grade chalcopyrite ore in the presence and absence of chloride in the irrigating lixiviant: ANFIS simulation.
    Vakylabad AB; Schaffie M; Naseri A; Ranjbar M; Manafi Z
    Bioprocess Biosyst Eng; 2016 Jul; 39(7):1081-104. PubMed ID: 27000968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemolithotrophic bacteria in copper ores leached at high sulfuric Acid concentration.
    Vasquez M; Espejo RT
    Appl Environ Microbiol; 1997 Jan; 63(1):332-4. PubMed ID: 16535497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy - a presentation.
    Tao H; Dongwei L
    Biotechnol Rep (Amst); 2014 Dec; 4():107-119. PubMed ID: 28626669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Leaching of copper ore of the Udokanskoe deposit at low temperatures by an association of acidophilic chemolithotrophic microorganisms].
    Kondrat'eva TF; Pivovarova TA; Krylova LN; Melamud VS; Adamov EV; Karavaĭko GI
    Prikl Biokhim Mikrobiol; 2011; 47(5):572-8. PubMed ID: 22232899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissolution of Cu and Zn-bearing ore by indigenous iron-oxidizing bacterial consortia supplemented with dried bamboo sawdust and variations in bacterial structural dynamics: A new concept in bioleaching.
    Sajjad W; Zheng G; Ma X; Xu W; Ali B; Rafiq M; Zada S; Irfan M; Zeman J
    Sci Total Environ; 2020 Mar; 709():136136. PubMed ID: 31884267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.