These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 24420085)

  • 1. Rapid differentiation of tracheary elements in cultured explants of Jerusalem artichoke.
    Phillips R; Dodds JH
    Planta; 1977 Jan; 135(3):207-12. PubMed ID: 24420085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct differentiation of tracheary elements in cultured explants of gamma-irradiated tubers of Helianthus tuberosus.
    Phillips R
    Planta; 1981 Nov; 153(3):262-6. PubMed ID: 24276831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved technique for the culture of jerusalem artichoke (Helianthus tuberosus L.) explants for use in the study of xylem differentiation.
    Markland W; Haddon L
    Plant Cell Rep; 1982 Oct; 1(5):229-31. PubMed ID: 24257716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA and histone content of immature tracheary elements from cultured artichoke explants.
    Dodds JH; Phillips R
    Planta; 1977 Jan; 135(3):213-6. PubMed ID: 24420086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on induced tracheary element differentiation in cultured tissues of tubers of the Jerusalem artichoke, Helianthus tuberosus.
    Phillips R; Arnott SM
    Histochem J; 1983 May; 15(5):427-36. PubMed ID: 6223901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation, characterization and expression of cyclin and cyclin-dependent kinase genes in Jerusalem artichoke (Helianthus tuberosus L.).
    Freeman D; Riou-Khamlichi C; Oakenfull EA; Murray JA
    J Exp Bot; 2003 Jan; 54(381):303-8. PubMed ID: 12493857
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of auxin and sucrose in the differentiation of sieve and tracheary elements in plant tissue cultures.
    Aloni R
    Planta; 1980 Nov; 150(3):255-63. PubMed ID: 24306691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uptake of Benzyladenine by Tuber Slices of Jerusalem Artichoke (Helianthus tuberosus L.) over a Wide Concentration Range.
    Minocha SC; Nissen P
    Plant Physiol; 1982 Aug; 70(2):528-31. PubMed ID: 16662528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The complete chloroplast genome of the Jerusalem artichoke (
    Zhong Q; Yang S; Sun X; Wang L; Li Y
    PeerJ; 2019; 7():e7596. PubMed ID: 31531272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic diversity of worldwide Jerusalem artichoke (Helianthus tuberosus) germplasm as revealed by RAPD markers.
    Wangsomnuk PP; Khampa S; Wangsomnuk P; Jogloy S; Mornkham T; Ruttawat B; Patanothai A; Fu YB
    Genet Mol Res; 2011 Dec; 10(4):4012-25. PubMed ID: 22194201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethanol fermentation with Kluyveromyces marxianus from Jerusalem artichoke grown in salina and irrigated with a mixture of seawater and freshwater.
    Yuan WJ; Zhao XQ; Ge XM; Bai FW
    J Appl Microbiol; 2008 Dec; 105(6):2076-83. PubMed ID: 19120653
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Galactoglucomannan oligosaccharides are assumed to affect tracheary element formation via interaction with auxin in Zinnia xylogenic cell culture.
    Kákošová A; Digonnet C; Goffner D; Lišková D
    Plant Cell Rep; 2013 Apr; 32(4):479-87. PubMed ID: 23283560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elicitation of Jerusalem artichoke (Helianthus tuberosus L.) cell suspension culture for enhancement of inulin production and altered degree of polymerisation.
    Ma C; Zhou D; Wang H; Han D; Wang Y; Yan X
    J Sci Food Agric; 2017 Jan; 97(1):88-94. PubMed ID: 26917428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and development of EST-SSR markers to study the genetic diversity and populations analysis of Jerusalem artichoke (Helianthus tuberosus L.).
    Yang S; Zhong Q; Tian J; Wang L; Zhao M; Li L; Sun X
    Genes Genomics; 2018 Oct; 40(10):1023-1032. PubMed ID: 29956221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Economic co-production of poly(malic acid) and pullulan from Jerusalem artichoke tuber by Aureobasidium pullulans HA-4D.
    Xia J; Xu J; Liu X; Xu J; Wang X; Li X
    BMC Biotechnol; 2017 Feb; 17(1):20. PubMed ID: 28231788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vulnerability of photosynthesis and photosystem I in Jerusalem artichoke (Helianthus tuberosus L.) exposed to waterlogging.
    Yan K; Zhao S; Cui M; Han G; Wen P
    Plant Physiol Biochem; 2018 Apr; 125():239-246. PubMed ID: 29477087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical composition of the tuber essential oil from Helianthus tuberosus L. (Asteraceae).
    Radulović NS; Đorđević MR
    Chem Biodivers; 2014 Mar; 11(3):427-37. PubMed ID: 24634072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensory quality and appropriateness of raw and boiled Jerusalem artichoke tubers (Helianthus tuberosus L.).
    Bach V; Kidmose U; Thybo AK; Edelenbos M
    J Sci Food Agric; 2013 Mar; 93(5):1211-8. PubMed ID: 22996585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hormonal control of cell proliferation and xylem differentiation in cultured tissues of Glycine max var. Biloxi.
    Fosket DE; Torrey JG
    Plant Physiol; 1969 Jun; 44(6):871-80. PubMed ID: 5816361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome skimming reveals the origin of the Jerusalem Artichoke tuber crop species: neither from Jerusalem nor an artichoke.
    Bock DG; Kane NC; Ebert DP; Rieseberg LH
    New Phytol; 2014 Feb; 201(3):1021-1030. PubMed ID: 24245977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.