BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 24420111)

  • 21. FixJ: a major regulator of the oxygen limitation response and late symbiotic functions of Sinorhizobium meliloti.
    Bobik C; Meilhoc E; Batut J
    J Bacteriol; 2006 Jul; 188(13):4890-902. PubMed ID: 16788198
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NrcR, a New Transcriptional Regulator of Rhizobium tropici CIAT 899 Involved in the Legume Root-Nodule Symbiosis.
    Del Cerro P; Rolla-Santos AA; Valderrama-Fernández R; Gil-Serrano A; Bellogín RA; Gomes DF; Pérez-Montaño F; Megías M; Hungría M; Ollero FJ
    PLoS One; 2016; 11(4):e0154029. PubMed ID: 27096734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rhizobium japonicum USDA 191 has two nodD genes that differ in primary structure and function.
    Appelbaum ER; Thompson DV; Idler K; Chartrain N
    J Bacteriol; 1988 Jan; 170(1):12-20. PubMed ID: 2826389
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Rhizobium--legume symbiosis.
    Beringer JE; Brewin N; Johnston AW; Schulman HM; Hopwood DA
    Proc R Soc Lond B Biol Sci; 1979 Apr; 204(1155):219-33. PubMed ID: 36624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genealogy of legume-Rhizobium symbioses.
    Broughton WJ; Perret X
    Curr Opin Plant Biol; 1999 Aug; 2(4):305-11. PubMed ID: 10458995
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An antimicrobial peptide essential for bacterial survival in the nitrogen-fixing symbiosis.
    Kim M; Chen Y; Xi J; Waters C; Chen R; Wang D
    Proc Natl Acad Sci U S A; 2015 Dec; 112(49):15238-43. PubMed ID: 26598690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Loss-of-function of ASPARTIC PEPTIDASE NODULE-INDUCED 1 (APN1) in Lotus japonicus restricts efficient nitrogen-fixing symbiosis with specific Mesorhizobium loti strains.
    Yamaya-Ito H; Shimoda Y; Hakoyama T; Sato S; Kaneko T; Hossain MS; Shibata S; Kawaguchi M; Hayashi M; Kouchi H; Umehara Y
    Plant J; 2018 Jan; 93(1):5-16. PubMed ID: 29086445
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nodulation genes in the Rhizobium--plant signal exchange.
    Lorkiewicz Z
    Acta Biochim Pol; 1997; 44(1):1-12. PubMed ID: 9241349
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nitric oxide in legume-rhizobium symbiosis.
    Meilhoc E; Boscari A; Bruand C; Puppo A; Brouquisse R
    Plant Sci; 2011 Nov; 181(5):573-81. PubMed ID: 21893254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxygen regulation of expression of nitrogen fixation genes in Rhizobium meliloti.
    Agron PG; Monson EK; Ditta GS; Helinski DR
    Res Microbiol; 1994; 145(5-6):454-9. PubMed ID: 7855432
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234.
    Perret X; Freiberg C; Rosenthal A; Broughton WJ; Fellay R
    Mol Microbiol; 1999 Apr; 32(2):415-25. PubMed ID: 10231496
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Critical protective role of bacterial superoxide dismutase in rhizobium-legume symbiosis.
    Santos R; Hérouart D; Puppo A; Touati D
    Mol Microbiol; 2000 Nov; 38(4):750-9. PubMed ID: 11115110
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rhizobium leguminosarum bv. viciae contains a second fnr/fixK-like gene and an unusual fixL homologue.
    Patschkowski T; Schlüter A; Priefer UB
    Mol Microbiol; 1996 Jul; 21(2):267-80. PubMed ID: 8858582
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The molecular basis of the host specificity of the Rhizobium bacteria.
    Spaink HP
    Antonie Van Leeuwenhoek; 1994; 65(2):81-98. PubMed ID: 7718036
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Key role of bacterial NH(4)(+) metabolism in Rhizobium-plant symbiosis.
    Patriarca EJ; Tatè R; Iaccarino M
    Microbiol Mol Biol Rev; 2002 Jun; 66(2):203-22. PubMed ID: 12040124
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of the expression from Rhizobium meliloti fix-promoters in other Rhizobium backgrounds.
    Cebolla A; Ruiz-Berraquero F; Palomares AJ
    Microbiology (Reading); 1994 Mar; 140 ( Pt 3)():443-53. PubMed ID: 8012569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome of Rhizobium leucaenae strains CFN 299(T) and CPAO 29.8: searching for genes related to a successful symbiotic performance under stressful conditions.
    Ormeño-Orrillo E; Gomes DF; Del Cerro P; Vasconcelos AT; Canchaya C; Almeida LG; Mercante FM; Ollero FJ; Megías M; Hungria M
    BMC Genomics; 2016 Aug; 17():534. PubMed ID: 27485828
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa.
    Torres-Quesada O; Oruezabal RI; Peregrina A; Jofré E; Lloret J; Rivilla R; Toro N; Jiménez-Zurdo JI
    BMC Microbiol; 2010 Mar; 10():71. PubMed ID: 20205931
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physiological impact of flavonoids on nodulation and ureide metabolism in legume plants.
    Bosse MA; Silva MBD; Oliveira NGRM; Araujo MA; Rodrigues C; Azevedo JP; Reis ARD
    Plant Physiol Biochem; 2021 Sep; 166():512-521. PubMed ID: 34171572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nod factors of Rhizobium are a key to the legume door.
    Relić B; Perret X; Estrada-García MT; Kopcinska J; Golinowski W; Krishnan HB; Pueppke SG; Broughton WJ
    Mol Microbiol; 1994 Jul; 13(1):171-8. PubMed ID: 7984092
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.