BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 24420116)

  • 1. Interaction of dichloromethane (methylene chloride) with the nitrous oxide reductase from Wolinella succinogenes.
    Zhang C; Hollocher TC
    World J Microbiol Biotechnol; 1993 Jul; 9(4):479-82. PubMed ID: 24420116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An apparently allosteric effect involving N2O with the nitrous oxide reductase from Wolinella succinogenes.
    Zhang C; Jones AM; Hollocher TC
    Biochem Biophys Res Commun; 1992 Aug; 187(1):135-9. PubMed ID: 1520293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A diffusion-controlled step in the catalytic cycle of nitrous oxide reductase from Wolinella succinogenes.
    Mukonoweshuro C; Hollocher TC
    Arch Biochem Biophys; 1993 Oct; 306(1):195-9. PubMed ID: 8215403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and some characteristics of a cytochrome c-containing nitrous oxide reductase from Wolinella succinogenes.
    Teraguchi S; Hollocher TC
    J Biol Chem; 1989 Feb; 264(4):1972-9. PubMed ID: 2536696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production and consumption of nitrous oxide in nitrate-ammonifying Wolinella succinogenes cells.
    Luckmann M; Mania D; Kern M; Bakken LR; Frostegård Å; Simon J
    Microbiology (Reading); 2014 Aug; 160(Pt 8):1749-1759. PubMed ID: 24781903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First practical assay for soluble nitrous oxide reductase of denitrifying bacteria and a partial kinetic characterization.
    Kristjansson JK; Hollocher TC
    J Biol Chem; 1980 Jan; 255(2):704-7. PubMed ID: 7356639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron transport to periplasmic nitrate reductase (NapA) of Wolinella succinogenes is independent of a NapC protein.
    Simon J; Sänger M; Schuster SC; Gross R
    Mol Microbiol; 2003 Jul; 49(1):69-79. PubMed ID: 12823811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron paramagnetic resonance observations on the cytochrome c-containing nitrous oxide reductase from Wolinella succinogenes.
    Zhang CS; Hollocher TC; Kolodziej AF; Orme-Johnson WH
    J Biol Chem; 1991 Feb; 266(4):2199-202. PubMed ID: 1846617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Periplasmic methacrylate reductase activity in Wolinella succinogenes.
    Gross R; Simon J; Kröger A
    Arch Microbiol; 2001 Oct; 176(4):310-3. PubMed ID: 11685377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial nitrous oxide respiration: electron transport chains and copper transfer reactions.
    Hein S; Simon J
    Adv Microb Physiol; 2019; 75():137-175. PubMed ID: 31655736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial growth with chlorinated methanes.
    Leisinger T; Braus-Stromeyer SA
    Environ Health Perspect; 1995 Jun; 103 Suppl 5(Suppl 5):33-6. PubMed ID: 8565906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diphenylene iodonium as an inhibitor for the hydrogenase complex of Rhodobacter capsulatus. Evidence for two distinct electron donor sites.
    Magnani P; Doussiere J; Lissolo T
    Biochim Biophys Acta; 2000 Jul; 1459(1):169-78. PubMed ID: 10924909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The unprecedented nos gene cluster of Wolinella succinogenes encodes a novel respiratory electron transfer pathway to cytochrome c nitrous oxide reductase.
    Simon J; Einsle O; Kroneck PM; Zumft WG
    FEBS Lett; 2004 Jul; 569(1-3):7-12. PubMed ID: 15225600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A NapC/NirT-type cytochrome c (NrfH) is the mediator between the quinone pool and the cytochrome c nitrite reductase of Wolinella succinogenes.
    Simon J; Gross R; Einsle O; Kroneck PM; Kröger A; Klimmek O
    Mol Microbiol; 2000 Feb; 35(3):686-96. PubMed ID: 10672190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three transcription regulators of the Nss family mediate the adaptive response induced by nitrate, nitric oxide or nitrous oxide in Wolinella succinogenes.
    Kern M; Simon J
    Environ Microbiol; 2016 Sep; 18(9):2899-912. PubMed ID: 26395430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DMSO respiration by the anaerobic rumen bacterium Wolinella succinogenes.
    Lorenzen J; Steinwachs S; Unden G
    Arch Microbiol; 1994; 162(4):277-81. PubMed ID: 7802544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transformation of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii.
    Egli C; Tschan T; Scholtz R; Cook AM; Leisinger T
    Appl Environ Microbiol; 1988 Nov; 54(11):2819-24. PubMed ID: 3145712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clade II nitrous oxide respiration of Wolinella succinogenes depends on the NosG, -C1, -C2, -H electron transport module, NosB and a Rieske/cytochrome bc complex.
    Hein S; Witt S; Simon J
    Environ Microbiol; 2017 Dec; 19(12):4913-4925. PubMed ID: 28925551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nrfI gene is essential for the attachment of the active site haem group of Wolinella succinogenes cytochrome c nitrite reductase.
    Pisa R; Stein T; Eichler R; Gross R; Simon J
    Mol Microbiol; 2002 Feb; 43(3):763-70. PubMed ID: 11929530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron transport chains and bioenergetics of respiratory nitrogen metabolism in Wolinella succinogenes and other Epsilonproteobacteria.
    Kern M; Simon J
    Biochim Biophys Acta; 2009 Jun; 1787(6):646-56. PubMed ID: 19171117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.