BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 24420232)

  • 1. Transport of exogenous auxin in two-branched dwarf pea seedlings (Pisum sativum L.) : Some implications for polarity and apical dominance.
    Morris DA
    Planta; 1977 Jan; 136(1):91-6. PubMed ID: 24420232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of auxin efflux carriers in the reversible loss of polar auxin transport in the pea (Pisum sativum L.) stem.
    Morris DA; Johnson CF
    Planta; 1990 Apr; 181(1):117-24. PubMed ID: 24196683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of auxin and CKs in boron deficiency induced changes in apical dominance of pea plants (Pisum sativum L.).
    Wang G; Römheld V; Li C; Bangerth F
    J Plant Physiol; 2006 Apr; 163(6):591-600. PubMed ID: 16330125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of auxin transport in pea (Pisum sativum L.) by phenylacetic acid: inhibition of polar auxin transport in intact plants and stem segments.
    Morris DA; Johnson CF
    Planta; 1987 Nov; 172(3):408-16. PubMed ID: 24225926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auxin transport in intact pea seedlings (Pisum sativum L.): The inhibition of transport by 2,3,5-triiodobenzoic acid.
    Morris DA; Kadir GO; Barry AJ
    Planta; 1973 Jun; 110(2):173-82. PubMed ID: 24474345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence that the mature leaves contribute auxin to the immature tissues of pea (Pisum sativum L.).
    Jager CE; Symons GM; Glancy NE; Reid JB; Ross JJ
    Planta; 2007 Jul; 226(2):361-8. PubMed ID: 17308928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The specificity of auxin transport in intact pea seedlings (Pisum sativum L.).
    Morris DA; Thomas AG
    Planta; 1974 Sep; 118(3):225-34. PubMed ID: 24442326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Applicability of the chemiosmotic polar diffusion theory to the transport of indol-3yl-acetic acid in the intact pea (Pisum sativum L.).
    Johnson CF; Morris DA
    Planta; 1989 May; 178(2):242-8. PubMed ID: 24212754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathways of auxin transport in the intact pea seedling (Pisum sativum L.).
    Morris DA; Kadir GO
    Planta; 1972 Jun; 107(2):171-82. PubMed ID: 24477401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of small direct electric currents on the transport of auxin in intact plants.
    Morris DA
    Planta; 1980 Dec; 150(5):431-4. PubMed ID: 24306895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of (14)C-labelled sucrose in seedlings of Pisum sativum L. Treated with indoleacetic acid and kinetin.
    Morris DA; Thomas EE
    Planta; 1968 Sep; 83(3):276-81. PubMed ID: 24519215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell length, light and(14)C-labelled indol-3yl-acetic acid transport inPisum satisum L. andPhaseolus vulgaris L.
    Eliezer J; Morris DA
    Planta; 1980 Jan; 149(4):327-31. PubMed ID: 24306367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulatory effect of cytokinins and interaction with IAA on the release of lateral buds of pea plants from apical dominance.
    Li C; Bangerth F
    J Plant Physiol; 2003 Sep; 160(9):1059-63. PubMed ID: 14593807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnitude and Kinetics of Stem Elongation Induced by Exogenous Indole-3-Acetic Acid in Intact Light-Grown Pea Seedlings.
    Yang T; Law DM; Davies PJ
    Plant Physiol; 1993 Jul; 102(3):717-724. PubMed ID: 12231860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auxin-growth relationships in maize coleoptiles and pea internodes and control by auxin of the tissue sensitivity to auxin.
    Haga K; Iino M
    Plant Physiol; 1998 Aug; 117(4):1473-86. PubMed ID: 9701602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hormonal Control of Parthenocarpic Ovary Growth by the Apical Shoot in Pea.
    Rodrigo MJ; García-Martínez JL
    Plant Physiol; 1998 Feb; 116(2):511-8. PubMed ID: 9490755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Origin and basipetal transport of the IAA responsible for rooting of carnation cuttings.
    Garrido G; Ramón Guerrero J; Angel Cano E; Acosta M; Sánchez-Bravo J
    Physiol Plant; 2002 Feb; 114(2):303-312. PubMed ID: 11903978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gravimorphism in current-year shoots of Abies balsamea: involvement of compensatory growth, indole-3-acetic acid transport and compression wood formation.
    Little CH; Lavigne MB
    Tree Physiol; 2002 Apr; 22(5):311-20. PubMed ID: 11960755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The characterization of gio, a new pea mutant, shows the role of indoleacetic acid in the control of fruit development by the apical shoot.
    Rodrigo MJ; López-Díaz I; García-Martínez JL
    Plant J; 1998 Apr; 14(1):83-90. PubMed ID: 15494055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of temperature and sink activity on the transport of (14)C-labelled indol-3yl-acetic acid in the intact pea plant (Pisum sativum L.).
    Eliezer J; Morris DA
    Planta; 1979 Dec; 147(3):216-24. PubMed ID: 24311035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.