These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24420254)

  • 1. Rapid sub-attomole microRNA detection on a portable microfluidic chip.
    Arata H; Hosokawa K; Maeda M
    Anal Sci; 2014; 30(1):129-35. PubMed ID: 24420254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid microRNA detection using power-free microfluidic chip: coaxial stacking effect enhances the sandwich hybridization.
    Arata H; Komatsu H; Han A; Hosokawa K; Maeda M
    Analyst; 2012 Jul; 137(14):3234-7. PubMed ID: 22614070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid and sensitive microRNA detection with laminar flow-assisted dendritic amplification on power-free microfluidic chip.
    Arata H; Komatsu H; Hosokawa K; Maeda M
    PLoS One; 2012; 7(11):e48329. PubMed ID: 23144864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplex MicroRNA Detection on a Power-free Microfluidic Chip with Laminar Flow-assisted Dendritic Amplification.
    Ishihara R; Hasegawa K; Hosokawa K; Maeda M
    Anal Sci; 2015; 31(7):573-6. PubMed ID: 26165275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity Enhancement of MicroRNA Detection Using a Power-free Microfluidic Chip.
    Kim YJ; Hosokawa K; Maeda M
    Anal Sci; 2019 Nov; 35(11):1227-1236. PubMed ID: 31327815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomarker Analysis on a Power-free Microfluidic Chip Driven by Degassed Poly(dimethylsiloxane).
    Hosokawa K
    Anal Sci; 2021 Mar; 37(3):399-403. PubMed ID: 33162420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Droplet Microfluidic Device Fabrication and Use for Isothermal Amplification and Detection of MicroRNA.
    Giuffrida MC; D'Agata R; Spoto G
    Methods Mol Biol; 2017; 1580():71-78. PubMed ID: 28439827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of a Surface-functionalized Power-free PDMS Microchip for MicroRNA Detection Utilizing Electron Beam-induced Graft Polymerization.
    Ishihara R; Uchino Y; Hosokawa K; Maeda M; Kikuchi A
    Anal Sci; 2017; 33(2):197-202. PubMed ID: 28190840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amplification-free detection of microRNAs via a rapid microarray-based sandwich assay.
    Clancy E; Burke M; Arabkari V; Barry T; Kelly H; Dwyer RM; Kerin MJ; Smith TJ
    Anal Bioanal Chem; 2017 May; 409(14):3497-3505. PubMed ID: 28349168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specificity of MicroRNA Detection on a Power-free Microfluidic Chip with Laminar Flow-assisted Dendritic Amplification.
    Hasegawa K; Negishi R; Matsumoto M; Yohda M; Hosokawa K; Maeda M
    Anal Sci; 2017; 33(2):171-177. PubMed ID: 28190836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated electrochemical microsystems for genetic detection of pathogens at the point of care.
    Hsieh K; Ferguson BS; Eisenstein M; Plaxco KW; Soh HT
    Acc Chem Res; 2015 Apr; 48(4):911-20. PubMed ID: 25785632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Power-free microchip immunoassay of PSA in human serum for point-of-care testing.
    Okada H; Hosokawa K; Maeda M
    Anal Sci; 2011; 27(3):237-41. PubMed ID: 21415503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isothermal circular-strand-displacement polymerization of DNA and microRNA in digital microfluidic devices.
    Giuffrida MC; Zanoli LM; D'Agata R; Finotti A; Gambari R; Spoto G
    Anal Bioanal Chem; 2015 Feb; 407(6):1533-43. PubMed ID: 25579461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA detection on a power-free microchip with laminar flow-assisted dendritic amplification.
    Hosokawa K; Sato T; Sato Y; Maeda M
    Anal Sci; 2010; 26(10):1053-7. PubMed ID: 20953047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-priming compartmentalization digital LAMP for point-of-care.
    Zhu Q; Gao Y; Yu B; Ren H; Qiu L; Han S; Jin W; Jin Q; Mu Y
    Lab Chip; 2012 Nov; 12(22):4755-63. PubMed ID: 22986619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid and reliable microRNA detection by stacking hybridization on electrochemiluminescent chip system.
    Liu W; Zhou X; Xing D
    Biosens Bioelectron; 2014 Aug; 58():388-94. PubMed ID: 24705177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-line lateral flow biosensor for logic detection of microRNA based on Y-shaped junction DNA and target recycling amplification.
    Huang Y; Wang W; Wu T; Xu LP; Wen Y; Zhang X
    Anal Bioanal Chem; 2016 Nov; 408(28):8195-8202. PubMed ID: 27624762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-powered integrated microfluidic point-of-care low-cost enabling (SIMPLE) chip.
    Yeh EC; Fu CC; Hu L; Thakur R; Feng J; Lee LP
    Sci Adv; 2017 Mar; 3(3):e1501645. PubMed ID: 28345028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Power-free poly(dimethylsiloxane) microfluidic devices for gold nanoparticle-based DNA analysis.
    Hosokawa K; Sato K; Ichikawa N; Maeda M
    Lab Chip; 2004 Jun; 4(3):181-5. PubMed ID: 15159775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface plasmon resonance biosensor for highly sensitive detection of microRNA based on DNA super-sandwich assemblies and streptavidin signal amplification.
    Ding X; Yan Y; Li S; Zhang Y; Cheng W; Cheng Q; Ding S
    Anal Chim Acta; 2015 May; 874():59-65. PubMed ID: 25910447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.