These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24420444)

  • 41. How to calibrate an object-adapted optical trap for force sensing and interferometric shape tracking of asymmetric structures.
    Koch M; Rohrbach A
    Opt Express; 2014 Oct; 22(21):25242-57. PubMed ID: 25401558
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Hybrid optical tweezers for dynamic micro-bead arrays.
    Tanaka Y; Tsutsui S; Ishikawa M; Kitajima H
    Opt Express; 2011 Aug; 19(16):15445-51. PubMed ID: 21934908
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Raman tweezers and their application to the study of singly trapped eukaryotic cells.
    Snook RD; Harvey TJ; Correia Faria E; Gardner P
    Integr Biol (Camb); 2009 Jan; 1(1):43-52. PubMed ID: 20023790
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fourier optics along a hybrid optical fiber for Bessel-like beam generation and its applications in multiple-particle trapping.
    Kim J; Jeong Y; Lee S; Ha W; Shin JS; Oh K
    Opt Lett; 2012 Feb; 37(4):623-5. PubMed ID: 22344127
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Radiation torque and force on optically trapped linear nanostructures.
    Borghese F; Denti P; Saija R; Iatì MA; Maragò OM
    Phys Rev Lett; 2008 Apr; 100(16):163903. PubMed ID: 18518199
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Single-molecule fluorescence imaging in living cells.
    Xia T; Li N; Fang X
    Annu Rev Phys Chem; 2013; 64():459-80. PubMed ID: 23331306
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optimized back-focal-plane interferometry directly measures forces of optically trapped particles.
    Farré A; Marsà F; Montes-Usategui M
    Opt Express; 2012 May; 20(11):12270-91. PubMed ID: 22714216
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Calibration of nonspherical particles in optical tweezers using only position measurement.
    Bui AA; Stilgoe AB; Nieminen TA; Rubinsztein-Dunlop H
    Opt Lett; 2013 Apr; 38(8):1244-6. PubMed ID: 23595446
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Combined holographic-mechanical optical tweezers: construction, optimization, and calibration.
    Hanes RD; Jenkins MC; Egelhaaf SU
    Rev Sci Instrum; 2009 Aug; 80(8):083703. PubMed ID: 19725658
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Three dimensional optical manipulation and structural imaging of soft materials by use of laser tweezers and multimodal nonlinear microscopy.
    Trivedi RP; Lee T; Bertness KA; Smalyukh II
    Opt Express; 2010 Dec; 18(26):27658-69. PubMed ID: 21197040
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optical mirror trap with a large field of view.
    Pitzek M; Steiger R; Thalhammer G; Bernet S; Ritsch-Marte M
    Opt Express; 2009 Oct; 17(22):19414-23. PubMed ID: 19997161
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 3D interferometric optical tweezers using a single spatial light modulator.
    Schonbrun E; Piestun R; Jordan P; Cooper J; Wulff K; Courtial J; Padgett M
    Opt Express; 2005 May; 13(10):3777-86. PubMed ID: 19495284
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Active particle control through silicon using conventional optical trapping techniques.
    Appleyard DC; Lang MJ
    Lab Chip; 2007 Dec; 7(12):1837-40. PubMed ID: 18030409
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers.
    Farré A; van der Horst A; Blab GA; Downing BP; Forde NR
    J Biophotonics; 2010 Apr; 3(4):224-33. PubMed ID: 20151444
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Diffraction-unlimited fluorescence microscopy of living biological samples using pcSOFI.
    Duwé S; Moeyaert B; Dedecker P
    Curr Protoc Chem Biol; 2015 Mar; 7(1):27-41. PubMed ID: 25727061
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fast label-free microscopy technique for 3D dynamic quantitative imaging of living cells.
    Rodrigo JA; Soto JM; Alieva T
    Biomed Opt Express; 2017 Dec; 8(12):5507-5517. PubMed ID: 29296484
    [TBL] [Abstract][Full Text] [Related]  

  • 57. High Spatiotemporal-Resolution Magnetic Tweezers: Calibration and Applications for DNA Dynamics.
    Dulin D; Cui TJ; Cnossen J; Docter MW; Lipfert J; Dekker NH
    Biophys J; 2015 Nov; 109(10):2113-25. PubMed ID: 26588570
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Monitoring the dynamics of primary T cell activation and differentiation using long term live cell imaging in microwell arrays.
    Zaretsky I; Polonsky M; Shifrut E; Reich-Zeliger S; Antebi Y; Aidelberg G; Waysbort N; Friedman N
    Lab Chip; 2012 Dec; 12(23):5007-15. PubMed ID: 23072772
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Manipulating motions of targeted single cells in solution by an integrated double-ring magnetic tweezers imaging microscope.
    Wu M; Yadav R; Pal N; Lu HP
    Rev Sci Instrum; 2017 Jul; 88(7):073703. PubMed ID: 28764529
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Position clamping in a holographic counterpropagating optical trap.
    Bowman R; Jesacher A; Thalhammer G; Gibson G; Ritsch-Marte M; Padgett M
    Opt Express; 2011 May; 19(10):9908-14. PubMed ID: 21643247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.