These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 2442051)
1. Transcriptional and translational requirements for developmental alterations in acetylcholine receptor channel function in Xenopus myotomal muscle. Brehm P; Kream RM; Moody-Corbett F Dev Biol; 1987 Sep; 123(1):222-30. PubMed ID: 2442051 [TBL] [Abstract][Full Text] [Related]
2. Developmental changes in the open time and conductance of acetylcholine receptors in aneural cultured Xenopus myocytes treated with cycloheximide or tunicamycin. Carlson CG; Leonard RJ Brain Res Dev Brain Res; 1989 Mar; 46(1):61-8. PubMed ID: 2468433 [TBL] [Abstract][Full Text] [Related]
3. Acetylcholine receptor channel properties during development of Xenopus muscle cells in culture. Brehm P; Kidokoro Y; Moody-Corbett F J Physiol; 1984 Dec; 357():203-17. PubMed ID: 6096531 [TBL] [Abstract][Full Text] [Related]
4. Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Mishina M; Takai T; Imoto K; Noda M; Takahashi T; Numa S; Methfessel C; Sakmann B Nature; 1986 May 22-28; 321(6068):406-11. PubMed ID: 2423878 [TBL] [Abstract][Full Text] [Related]
5. Two types of acetylcholine receptor channels in developing Xenopus muscle cells in culture: further kinetic analyses. Igusa Y; Kidokoro Y J Physiol; 1987 Aug; 389():271-300. PubMed ID: 3681728 [TBL] [Abstract][Full Text] [Related]
6. Sequential expression of acetylcholine receptor isoforms in mesodermalized Xenopus animal caps. Reuer Q; Kullberg RW; Owens JL Dev Biol; 1994 Nov; 166(1):323-30. PubMed ID: 7525390 [TBL] [Abstract][Full Text] [Related]
7. Properties of non-junctional acetylcholine receptor channels on innervated muscle of Xenopus laevis. Brehm P; Kullberg R; Moody-Corbett F J Physiol; 1984 May; 350():631-48. PubMed ID: 6086900 [TBL] [Abstract][Full Text] [Related]
8. Release of acetylcholine from embryonic myocytes in Xenopus cell cultures. Fu WM; Liou HC; Chen YH; Wang SM J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):497-506. PubMed ID: 9575298 [TBL] [Abstract][Full Text] [Related]
9. In vivo development of nicotinic acetylcholine receptor channels in Xenopus myotomal muscle. Owens JL; Kullberg R J Neurosci; 1989 Mar; 9(3):1018-28. PubMed ID: 2538578 [TBL] [Abstract][Full Text] [Related]
10. Topographical rearrangement of acetylcholine receptors alters channel kinetics. Young SH; Poo MM Nature; 1983 Jul 14-20; 304(5922):161-3. PubMed ID: 6306473 [TBL] [Abstract][Full Text] [Related]
13. The epsilon subunit confers fast channel gating on multiple classes of acetylcholine receptors. Camacho P; Liu Y; Mandel G; Brehm P J Neurosci; 1993 Feb; 13(2):605-13. PubMed ID: 7678858 [TBL] [Abstract][Full Text] [Related]
14. Acetylcholine-gated and chloride conductance channel expression in rat muscle membrane. Heathcote RD J Physiol; 1989 Jul; 414():473-97. PubMed ID: 2481727 [TBL] [Abstract][Full Text] [Related]
15. Gating kinetics of nonjunctional acetylcholine receptor channels in developing Xenopus muscle. Kullberg R; Kasprzak H J Neurosci; 1985 Apr; 5(4):970-6. PubMed ID: 2580068 [TBL] [Abstract][Full Text] [Related]
16. Activation of the primary kinetic modes of large- and small-conductance cholinergic ion channels in Xenopus myocytes. Auerbach A; Lingle CJ J Physiol; 1987 Dec; 393():437-66. PubMed ID: 2451741 [TBL] [Abstract][Full Text] [Related]
17. Changes in kinetics of acetylcholine receptor channels after initial expression in Xenopus myocyte culture. Rohrbough J; Kidokoro Y J Physiol; 1990 Jun; 425():245-69. PubMed ID: 1698976 [TBL] [Abstract][Full Text] [Related]
18. Two types of ACh receptors contribute to fast channel gating on mouse skeletal muscle. Shepherd D; Brehm P J Neurophysiol; 1997 Dec; 78(6):2966-74. PubMed ID: 9405516 [TBL] [Abstract][Full Text] [Related]
19. Calcitonin gene-related peptide lengthens acetylcholine receptor channel open time in developing muscle. Owens JL; Kullberg RW Recept Channels; 1993; 1(2):165-71. PubMed ID: 8081720 [TBL] [Abstract][Full Text] [Related]
20. In vivo effects of transcriptional and translational inhibitors on duodenal vitamin D-dependent calcium-binding protein messenger ribonucleic acid stimulation by 1,25-dihydroxycholecalciferol. Dupret JM; Brun P; Thomasset M Endocrinology; 1986 Dec; 119(6):2476-83. PubMed ID: 3780535 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]