These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 24420633)

  • 1. Precursors and genetic control of anthocyanin synthesis in Matthiola incana R. Br.
    Forkmann G
    Planta; 1977 Jan; 137(2):159-63. PubMed ID: 24420633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The B-ring hydroxylation pattern of intermediates of anthocyanin synthesis in pelargonidin-and cyanidin-producing lines of Matthiola incana.
    Forkmann G
    Planta; 1980 Mar; 148(2):157-61. PubMed ID: 24309703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leucoanthocyanidins as intermediates in anthocyanidin biosynthesis in flowers of Matthiola incana R. Br.
    Heller W; Britsch L; Forkmann G; Grisebach H
    Planta; 1985 Feb; 163(2):191-6. PubMed ID: 24249337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic control of UDP-glucose: anthocyanin 5-O-glucosyltransferase from flowers of Matthiola incana R.Br.
    Teusch M; Forkmann G; Seyffert W
    Planta; 1986 Sep; 168(4):586-91. PubMed ID: 24232337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetically controlled anthocyanin synthesis in cell cultures of Matthiola incana.
    Leweke B; Forkmann G
    Plant Cell Rep; 1982 Apr; 1(3):98-100. PubMed ID: 24259018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transparent Testa Glabra 1 (TTG1) and TTG1-like genes in Matthiola incana R. Br. and related Brassicaceae and mutation in the WD-40 motif.
    Dressel A; Hemleben V
    Plant Biol (Stuttg); 2009 Mar; 11(2):204-12. PubMed ID: 19228327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic reduction of (+)-dihydroflavonols to flavan-3,4-cis-diols with flower extracts from Matthiola incana and its role in anthocyanin biosynthesis.
    Heller W; Forkmann G; Britsch L; Grisebach H
    Planta; 1985 Aug; 165(2):284-7. PubMed ID: 24241054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of flavonoid biosynthesis by gibberellic acid in cell suspension cultures of Daucus carota L.
    Hinderer W; Petersen M; Seitz HU
    Planta; 1984 May; 160(6):544-9. PubMed ID: 24258782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization and expression of chalcone synthase in different genotypes of Matthiola incana R.Br. during flower development.
    Rall S; Hemleben V
    Plant Mol Biol; 1984 May; 3(3):137-45. PubMed ID: 24310347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and structural features of a chalcone synthase mutation in a white-flowering line of Matthiola incana R. Br. (Brassicaceae).
    Hemleben V; Dressel A; Epping B; Lukacin R; Martens S; Austin M
    Plant Mol Biol; 2004 May; 55(3):455-65. PubMed ID: 15604692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acylated cyanidin 3-sambubioside-5-glucosides in Matthiola incana.
    Saito N; Tatsuzawa F; Nishiyama A; Yokoi M; Shigihara A; Honda T
    Phytochemistry; 1995 Mar; 38(4):1027-32. PubMed ID: 7766384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of quantitative characters by genes with biochemically definable action. III. The components of genetic effects in the inheritance of anthocyanins in Matthiola incana R. Br.
    Jana S; Seyffert W
    Theor Appl Genet; 1971 Jan; 41(8):329-37. PubMed ID: 24430522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uridine 5'-diphosphate-xylose: anthocyanidin 3-O-glucose-xylosyltransferase from petals of Matthiola incana R.Br.
    Teusch M
    Planta; 1986 Dec; 169(4):559-63. PubMed ID: 24232765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic and biochemical studies on the conversion of flavanones to dihydroflavonols in flowers of Petunia hybrida.
    Froemel S; de Vlaming P; Stotz G; Wiering H; Forkmann G; Schram AW
    Theor Appl Genet; 1985 Aug; 70(5):561-8. PubMed ID: 24253068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Simulation of quantitative characters by genes with biochemically definable action : VIII. Investigations on the optical density of anthocyanins].
    Forkmann G
    Theor Appl Genet; 1977 Jan; 49(1):43-8. PubMed ID: 24408511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of the major anthocyanin in Arabidopsis thaliana.
    Bloor SJ; Abrahams S
    Phytochemistry; 2002 Feb; 59(3):343-6. PubMed ID: 11830144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic control of the conversion of dihydroflavonols into flavonols and anthocyanins in flowers of Petunia hybrida.
    Gerats AG; de Vlaming P; Doodeman M; Al B; Schram AW
    Planta; 1982 Aug; 155(4):364-8. PubMed ID: 24271874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flower color patterning in pansy (Viola × wittrockiana Gams.) is caused by the differential expression of three genes from the anthocyanin pathway in acyanic and cyanic flower areas.
    Li Q; Wang J; Sun HY; Shang X
    Plant Physiol Biochem; 2014 Nov; 84():134-141. PubMed ID: 25270164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two basic-helix-loop-helix genes (MYC-146 and GL3) from Arabidopsis can activate anthocyanin biosynthesis in a white-flowered Matthiola incana mutant.
    Ramsay NA; Walker AR; Mooney M; Gray JC
    Plant Mol Biol; 2003 Jun; 52(3):679-88. PubMed ID: 12956536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hydroxycinnamic acids on blue color expression of cyanidin derivatives and their metal chelates.
    Sigurdson GT; Robbins RJ; Collins TM; Giusti MM
    Food Chem; 2017 Nov; 234():131-138. PubMed ID: 28551216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.