These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 24420931)
1. A hydraulic model is compatible with rapid changes in leaf elongation under fluctuating evaporative demand and soil water status. Caldeira CF; Bosio M; Parent B; Jeanguenin L; Chaumont F; Tardieu F Plant Physiol; 2014 Apr; 164(4):1718-30. PubMed ID: 24420931 [TBL] [Abstract][Full Text] [Related]
2. Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: a trans-scale approach. Parent B; Hachez C; Redondo E; Simonneau T; Chaumont F; Tardieu F Plant Physiol; 2009 Apr; 149(4):2000-12. PubMed ID: 19211703 [TBL] [Abstract][Full Text] [Related]
3. Aquaporin-mediated reduction in maize root hydraulic conductivity impacts cell turgor and leaf elongation even without changing transpiration. Ehlert C; Maurel C; Tardieu F; Simonneau T Plant Physiol; 2009 Jun; 150(2):1093-104. PubMed ID: 19369594 [TBL] [Abstract][Full Text] [Related]
4. The growth of vegetative and reproductive structures (leaves and silks) respond similarly to hydraulic cues in maize. Turc O; Bouteillé M; Fuad-Hassan A; Welcker C; Tardieu F New Phytol; 2016 Oct; 212(2):377-88. PubMed ID: 27400762 [TBL] [Abstract][Full Text] [Related]
5. Leaf growth and turgor in growing cells of maize (Zea mays L.) respond to evaporative demand under moderate irrigation but not in water-saturated soil. Bouchabké O; Tardieu F; Simonneau T Plant Cell Environ; 2006 Jun; 29(6):1138-48. PubMed ID: 17080939 [TBL] [Abstract][Full Text] [Related]
6. Root pressurization affects growth-induced water potentials and growth in dehydrated maize leaves. Tang AC; Boyer JS J Exp Bot; 2003 Nov; 54(392):2479-88. PubMed ID: 14512379 [TBL] [Abstract][Full Text] [Related]
7. Above and belowground traits impacting transpiration decline during soil drying in 48 maize (Zea mays) genotypes. Koehler T; Schaum C; Tung SY; Steiner F; Tyborski N; Wild AJ; Akale A; Pausch J; Lueders T; Wolfrum S; Mueller CW; Vidal A; Vahl WK; Groth J; Eder B; Ahmed MA; Carminati A Ann Bot; 2023 Mar; 131(2):373-386. PubMed ID: 36479887 [TBL] [Abstract][Full Text] [Related]
8. Leaf hydraulic conductance declines in coordination with photosynthesis, transpiration and leaf water status as soybean leaves age regardless of soil moisture. Locke AM; Ort DR J Exp Bot; 2014 Dec; 65(22):6617-27. PubMed ID: 25281701 [TBL] [Abstract][Full Text] [Related]
9. Modification of the Expression of the Aquaporin ZmPIP2;5 Affects Water Relations and Plant Growth. Ding L; Milhiet T; Couvreur V; Nelissen H; Meziane A; Parent B; Aesaert S; Van Lijsebettens M; Inzé D; Tardieu F; Draye X; Chaumont F Plant Physiol; 2020 Apr; 182(4):2154-2165. PubMed ID: 31980571 [TBL] [Abstract][Full Text] [Related]
10. Rice leaf growth and water potential are resilient to evaporative demand and soil water deficit once the effects of root system are neutralized. Parent B; Suard B; Serraj R; Tardieu F Plant Cell Environ; 2010 Aug; 33(8):1256-67. PubMed ID: 20302604 [TBL] [Abstract][Full Text] [Related]
11. Circadian rhythms of hydraulic conductance and growth are enhanced by drought and improve plant performance. Caldeira CF; Jeanguenin L; Chaumont F; Tardieu F Nat Commun; 2014 Nov; 5():5365. PubMed ID: 25370944 [TBL] [Abstract][Full Text] [Related]
12. A 3-D functional-structural grapevine model that couples the dynamics of water transport with leaf gas exchange. Zhu J; Dai Z; Vivin P; Gambetta GA; Henke M; Peccoux A; Ollat N; Delrot S Ann Bot; 2018 Apr; 121(5):833-848. PubMed ID: 29293870 [TBL] [Abstract][Full Text] [Related]
13. Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid. Rogiers SY; Greer DH; Hatfield JM; Hutton RJ; Clarke SJ; Hutchinson PA; Somers A Tree Physiol; 2012 Mar; 32(3):249-61. PubMed ID: 22199014 [TBL] [Abstract][Full Text] [Related]
14. Drought, abscisic acid and transpiration rate effects on the regulation of PIP aquaporin gene expression and abundance in Phaseolus vulgaris plants. Aroca R; Ferrante A; Vernieri P; Chrispeels MJ Ann Bot; 2006 Dec; 98(6):1301-10. PubMed ID: 17028296 [TBL] [Abstract][Full Text] [Related]
15. Stomatal conductance tracks soil-to-leaf hydraulic conductance in faba bean and maize during soil drying. Müllers Y; Postma JA; Poorter H; van Dusschoten D Plant Physiol; 2022 Nov; 190(4):2279-2294. PubMed ID: 36099023 [TBL] [Abstract][Full Text] [Related]
16. Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Bárzana G; Aroca R; Paz JA; Chaumont F; Martinez-Ballesta MC; Carvajal M; Ruiz-Lozano JM Ann Bot; 2012 Apr; 109(5):1009-17. PubMed ID: 22294476 [TBL] [Abstract][Full Text] [Related]
17. Growth-induced water potentials and the growth of maize leaves. Tang AC; Boyer JS J Exp Bot; 2002 Mar; 53(368):489-503. PubMed ID: 11847248 [TBL] [Abstract][Full Text] [Related]
18. Xylem tension affects growth-induced water potential and daily elongation of maize leaves. Tang AC; Boyer JS J Exp Bot; 2008; 59(4):753-64. PubMed ID: 18349050 [TBL] [Abstract][Full Text] [Related]
19. Short-term control of maize cell and root water permeability through plasma membrane aquaporin isoforms. Hachez C; Veselov D; Ye Q; Reinhardt H; Knipfer T; Fricke W; Chaumont F Plant Cell Environ; 2012 Jan; 35(1):185-98. PubMed ID: 21950760 [TBL] [Abstract][Full Text] [Related]