These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 24421279)
1. Angiogenic/osteogenic response of BMMSCs on bone-derived scaffold: effect of hypoxia and role of PI3K/Akt-mediated VEGF-VEGFR pathway. Zhou Y; Guan X; Yu M; Wang X; Zhu W; Wang C; Yu M; Wang H Biotechnol J; 2014 Jul; 9(7):944-53. PubMed ID: 24421279 [TBL] [Abstract][Full Text] [Related]
2. Hypoxia induces osteogenic/angiogenic responses of bone marrow-derived mesenchymal stromal cells seeded on bone-derived scaffolds via ERK1/2 and p38 pathways. Zhou Y; Guan X; Wang H; Zhu Z; Li C; Wu S; Yu H Biotechnol Bioeng; 2013 Jun; 110(6):1794-804. PubMed ID: 23296944 [TBL] [Abstract][Full Text] [Related]
3. Osteogenesis and angiogenesis induced by porous β-CaSiO(3)/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways. Wang C; Lin K; Chang J; Sun J Biomaterials; 2013 Jan; 34(1):64-77. PubMed ID: 23069715 [TBL] [Abstract][Full Text] [Related]
4. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering. Rodrigues MT; Martins A; Dias IR; Viegas CA; Neves NM; Gomes ME; Reis RL J Tissue Eng Regen Med; 2012 Nov; 6(10):e24-30. PubMed ID: 22451140 [TBL] [Abstract][Full Text] [Related]
5. Additive effect of mesenchymal stem cells and VEGF to vascularization of PLGA scaffolds. Kampmann A; Lindhorst D; Schumann P; Zimmerer R; Kokemüller H; Rücker M; Gellrich NC; Tavassol F Microvasc Res; 2013 Nov; 90():71-9. PubMed ID: 23899416 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies. Koç A; Finkenzeller G; Elçin AE; Stark GB; Elçin YM J Biomater Appl; 2014 Nov; 29(5):748-60. PubMed ID: 25062670 [TBL] [Abstract][Full Text] [Related]
7. Delivery of dimethyloxallyl glycine in mesoporous bioactive glass scaffolds to improve angiogenesis and osteogenesis of human bone marrow stromal cells. Wu C; Zhou Y; Chang J; Xiao Y Acta Biomater; 2013 Nov; 9(11):9159-68. PubMed ID: 23811216 [TBL] [Abstract][Full Text] [Related]
8. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Wu C; Zhou Y; Fan W; Han P; Chang J; Yuen J; Zhang M; Xiao Y Biomaterials; 2012 Mar; 33(7):2076-85. PubMed ID: 22177618 [TBL] [Abstract][Full Text] [Related]
9. Translating the role of osteogenic-angiogenic coupling in bone formation: Highly efficient chitosan-pDNA activated scaffolds can accelerate bone regeneration in critical-sized bone defects. Raftery RM; Mencía Castaño I; Chen G; Cavanagh B; Quinn B; Curtin CM; Cryan SA; O'Brien FJ Biomaterials; 2017 Dec; 149():116-127. PubMed ID: 29024837 [TBL] [Abstract][Full Text] [Related]
11. Rat bone marrow stromal cells-seeded porous gelatin/tricalcium phosphate/oligomeric proanthocyanidins composite scaffold for bone repair. Chen KY; Chung CM; Chen YS; Bau DT; Yao CH J Tissue Eng Regen Med; 2013 Sep; 7(9):708-19. PubMed ID: 22392838 [TBL] [Abstract][Full Text] [Related]
12. Epidermal growth factor as a candidate for ex vivo expansion of bone marrow-derived mesenchymal stem cells. Tamama K; Fan VH; Griffith LG; Blair HC; Wells A Stem Cells; 2006 Mar; 24(3):686-95. PubMed ID: 16150920 [TBL] [Abstract][Full Text] [Related]
13. Macrochanneled bioactive ceramic scaffolds in combination with collagen hydrogel: a new tool for bone tissue engineering. Yu HS; Jin GZ; Won JE; Wall I; Kim HW J Biomed Mater Res A; 2012 Sep; 100(9):2431-40. PubMed ID: 22566478 [TBL] [Abstract][Full Text] [Related]
14. Porous lithium-doped hydroxyapatite scaffold seeded with hypoxia-preconditioned bone-marrow mesenchymal stem cells for bone-tissue regeneration. Li D; Huifang L; Zhao J; Yang Z; Xie X; Wei Z; Li D; Kang P Biomed Mater; 2018 Jun; 13(5):055002. PubMed ID: 29775181 [TBL] [Abstract][Full Text] [Related]
16. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering. Igwe JC; Mikael PE; Nukavarapu SP J Tissue Eng Regen Med; 2014 Feb; 8(2):131-42. PubMed ID: 22689304 [TBL] [Abstract][Full Text] [Related]
17. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Wu C; Zhou Y; Xu M; Han P; Chen L; Chang J; Xiao Y Biomaterials; 2013 Jan; 34(2):422-33. PubMed ID: 23083929 [TBL] [Abstract][Full Text] [Related]
18. Contrasting effects of vasculogenic induction upon biaxial bioreactor stimulation of mesenchymal stem cells and endothelial progenitor cells cocultures in three-dimensional scaffolds under in vitro and in vivo paradigms for vascularized bone tissue engineering. Liu Y; Teoh SH; Chong MS; Yeow CH; Kamm RD; Choolani M; Chan JK Tissue Eng Part A; 2013 Apr; 19(7-8):893-904. PubMed ID: 23102089 [TBL] [Abstract][Full Text] [Related]
19. Flow perfusion culture of human mesenchymal stem cells on silicate-substituted tricalcium phosphate scaffolds. Bjerre L; Bünger CE; Kassem M; Mygind T Biomaterials; 2008 Jun; 29(17):2616-27. PubMed ID: 18374976 [TBL] [Abstract][Full Text] [Related]
20. Collagen I gel promotes homogenous osteogenic differentiation of adipose tissue-derived mesenchymal stem cells in serum-derived albumin scaffold. Kang BJ; Kim Y; Lee SH; Kim WH; Woo HM; Kweon OK J Biomater Sci Polym Ed; 2013; 24(10):1233-43. PubMed ID: 23713425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]