These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 24421279)
21. Combined effects of connective tissue growth factor-modified bone marrow-derived mesenchymal stem cells and NaOH-treated PLGA scaffolds on the repair of articular cartilage defect in rabbits. Zhu S; Zhang B; Man C; Ma Y; Liu X; Hu J Cell Transplant; 2014 Apr; 23(6):715-27. PubMed ID: 24763260 [TBL] [Abstract][Full Text] [Related]
22. Effect of seeding technique and scaffold material on bone formation in tissue-engineered constructs. Schliephake H; Zghoul N; Jäger V; van Griensven M; Zeichen J; Gelinsky M; Wülfing T J Biomed Mater Res A; 2009 Aug; 90(2):429-37. PubMed ID: 18523951 [TBL] [Abstract][Full Text] [Related]
23. Bone marrow stromal cells with a combined expression of BMP-2 and VEGF-165 enhanced bone regeneration. Xiao C; Zhou H; Liu G; Zhang P; Fu Y; Gu P; Hou H; Tang T; Fan X Biomed Mater; 2011 Feb; 6(1):015013. PubMed ID: 21252414 [TBL] [Abstract][Full Text] [Related]
24. Bone marrow mesenchymal stem cells in a three-dimensional gelatin sponge scaffold attenuate inflammation, promote angiogenesis, and reduce cavity formation in experimental spinal cord injury. Zeng X; Zeng YS; Ma YH; Lu LY; Du BL; Zhang W; Li Y; Chan WY Cell Transplant; 2011; 20(11-12):1881-99. PubMed ID: 21396163 [TBL] [Abstract][Full Text] [Related]
25. Hypoxia pretreatment of bone marrow-derived mesenchymal stem cells seeded in a collagen-chitosan sponge scaffold promotes skin wound healing in diabetic rats with hindlimb ischemia. Tong C; Hao H; Xia L; Liu J; Ti D; Dong L; Hou Q; Song H; Liu H; Zhao Y; Fu X; Han W Wound Repair Regen; 2016; 24(1):45-56. PubMed ID: 26463737 [TBL] [Abstract][Full Text] [Related]
26. Repair of calvarial defects with customized tissue-engineered bone grafts I. Evaluation of osteogenesis in a three-dimensional culture system. Schantz JT; Teoh SH; Lim TC; Endres M; Lam CX; Hutmacher DW Tissue Eng; 2003; 9 Suppl 1():S113-26. PubMed ID: 14511475 [TBL] [Abstract][Full Text] [Related]
27. Adenovirus-mediated expression of vascular endothelial growth factor-a potentiates bone morphogenetic protein9-induced osteogenic differentiation and bone formation. Pi CJ; Liang KL; Ke ZY; Chen F; Cheng Y; Yin LJ; Deng ZL; He BC; Chen L Biol Chem; 2016 Aug; 397(8):765-75. PubMed ID: 27003241 [TBL] [Abstract][Full Text] [Related]
28. Ectopic vascularized bone formation by human mesenchymal stem cell microtissues in a biocomposite scaffold. Narayan R; Agarwal T; Mishra D; Maji S; Mohanty S; Mukhopadhyay A; Maiti TK Colloids Surf B Biointerfaces; 2017 Dec; 160():661-670. PubMed ID: 29031226 [TBL] [Abstract][Full Text] [Related]
29. The stimulation of osteogenic differentiation of mesenchymal stem cells and vascular endothelial growth factor secretion of endothelial cells by β-CaSiO3/β-Ca3(PO4)2 scaffolds. Wang C; Lin K; Chang J; Sun J J Biomed Mater Res A; 2014 Jul; 102(7):2096-104. PubMed ID: 23894078 [TBL] [Abstract][Full Text] [Related]
30. Evaluation of partially demineralized osteoporotic cancellous bone matrix combined with human bone marrow stromal cells for tissue engineering: an in vitro and in vivo study. Liu G; Sun J; Li Y; Zhou H; Cui L; Liu W; Cao Y Calcif Tissue Int; 2008 Sep; 83(3):176-85. PubMed ID: 18704250 [TBL] [Abstract][Full Text] [Related]
31. Transplantation of copper-doped calcium polyphosphate scaffolds combined with copper (II) preconditioned bone marrow mesenchymal stem cells for bone defect repair. Li Y; Wang J; Wang Y; Du W; Wang S J Biomater Appl; 2018 Jan; 32(6):738-753. PubMed ID: 29295641 [TBL] [Abstract][Full Text] [Related]
32. Tissue-engineered bone formation using periosteal-derived cells and polydioxanone/pluronic F127 scaffold with pre-seeded adipose tissue-derived CD146 positive endothelial-like cells. Lee JH; Kim JH; Oh SH; Kim SJ; Hah YS; Park BW; Kim DR; Rho GJ; Maeng GH; Jeon RH; Lee HC; Kim JR; Kim GC; Kim UK; Byun JH Biomaterials; 2011 Aug; 32(22):5033-45. PubMed ID: 21543114 [TBL] [Abstract][Full Text] [Related]
33. Osteopontin sequence modified mesoporous calcium silicate scaffolds to promote angiogenesis in bone tissue regeneration. Zhu M; He H; Meng Q; Zhu Y; Ye X; Xu N; Yu J J Mater Chem B; 2020 Jul; 8(27):5849-5861. PubMed ID: 32530014 [TBL] [Abstract][Full Text] [Related]
34. Self-assembled extracellular macromolecular matrices and their different osteogenic potential with preosteoblasts and rat bone marrow mesenchymal stromal cells. Bae SE; Bhang SH; Kim BS; Park K Biomacromolecules; 2012 Sep; 13(9):2811-20. PubMed ID: 22813212 [TBL] [Abstract][Full Text] [Related]
35. Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells. van Gastel N; Torrekens S; Roberts SJ; Moermans K; Schrooten J; Carmeliet P; Luttun A; Luyten FP; Carmeliet G Stem Cells; 2012 Nov; 30(11):2460-71. PubMed ID: 22911908 [TBL] [Abstract][Full Text] [Related]
36. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds. Ye X; Yin X; Yang D; Tan J; Liu G Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840 [TBL] [Abstract][Full Text] [Related]
37. Chitosan-poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model. Costa-Pinto AR; Correlo VM; Sol PC; Bhattacharya M; Srouji S; Livne E; Reis RL; Neves NM J Tissue Eng Regen Med; 2012 Jan; 6(1):21-8. PubMed ID: 21312336 [TBL] [Abstract][Full Text] [Related]
38. Design of biomimetic and bioactive cold plasma-modified nanostructured scaffolds for enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Wang M; Cheng X; Zhu W; Holmes B; Keidar M; Zhang LG Tissue Eng Part A; 2014 Mar; 20(5-6):1060-71. PubMed ID: 24219622 [TBL] [Abstract][Full Text] [Related]
39. Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow. Zhang W; Walboomers XF; van Osch GJ; van den Dolder J; Jansen JA Tissue Eng Part A; 2008 Feb; 14(2):285-94. PubMed ID: 18333781 [TBL] [Abstract][Full Text] [Related]
40. 3D-printed dimethyloxallyl glycine delivery scaffolds to improve angiogenesis and osteogenesis. Min Z; Shichang Z; Chen X; Yufang Z; Changqing Z Biomater Sci; 2015 Aug; 3(8):1236-44. PubMed ID: 26222039 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]