These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 24421861)

  • 1. Models of muscle contraction and energetics.
    Lai N; Gladden LB; Carlier PG; Cabrera ME
    Drug Discov Today Dis Models; 2008; 5(4):273-288. PubMed ID: 24421861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative phosphorylation: unique regulatory mechanism and role in metabolic homeostasis.
    Wilson DF
    J Appl Physiol (1985); 2017 Mar; 122(3):611-619. PubMed ID: 27789771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of ATP supply during muscle contraction: theoretical studies.
    Korzeniewski B
    Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1189-95. PubMed ID: 9494084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic dynamics in skeletal muscle during acute reduction in blood flow and oxygen supply to mitochondria: in-silico studies using a multi-scale, top-down integrated model.
    Dash RK; Li Y; Kim J; Beard DA; Saidel GM; Cabrera ME
    PLoS One; 2008 Sep; 3(9):e3168. PubMed ID: 18779864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A metabolic control analysis of kinetic controls in ATP free energy metabolism in contracting skeletal muscle.
    Jeneson JA; Westerhoff HV; Kushmerick MJ
    Am J Physiol Cell Physiol; 2000 Sep; 279(3):C813-32. PubMed ID: 10942732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular energetics during exercise.
    Conley KE
    Adv Vet Sci Comp Med; 1994; 38A():1-39. PubMed ID: 7801830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of oxidative phosphorylation through each-step activation (ESA): Evidences from computer modeling.
    Korzeniewski B
    Prog Biophys Mol Biol; 2017 May; 125():1-23. PubMed ID: 27939921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of oxidative phosphorylation in different muscles and various experimental conditions.
    Korzeniewski B
    Biochem J; 2003 Nov; 375(Pt 3):799-804. PubMed ID: 12901719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative ATP synthesis in human quadriceps declines during 4 minutes of maximal contractions.
    Bartlett MF; Fitzgerald LF; Nagarajan R; Hiroi Y; Kent JA
    J Physiol; 2020 May; 598(10):1847-1863. PubMed ID: 32045011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Each-step activation of oxidative phosphorylation is necessary to explain muscle metabolic kinetic responses to exercise and recovery in humans.
    Korzeniewski B; Rossiter HB
    J Physiol; 2015 Dec; 593(24):5255-68. PubMed ID: 26503399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic control over the oxygen consumption flux in intact skeletal muscle: in silico studies.
    Liguzinski P; Korzeniewski B
    Am J Physiol Cell Physiol; 2006 Dec; 291(6):C1213-24. PubMed ID: 16760266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The modeling of oxidative phosphorylation in skeletal muscle.
    Korzeniewski B
    Jpn J Physiol; 2004 Dec; 54(6):511-6. PubMed ID: 15760482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy demand and supply in human skeletal muscle.
    Barclay CJ
    J Muscle Res Cell Motil; 2017 Apr; 38(2):143-155. PubMed ID: 28286928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Skeletal muscle energy metabolism during exercise.
    Hargreaves M; Spriet LL
    Nat Metab; 2020 Sep; 2(9):817-828. PubMed ID: 32747792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 'Idealized' state 4 and state 3 in mitochondria vs. rest and work in skeletal muscle.
    Korzeniewski B
    PLoS One; 2015; 10(2):e0117145. PubMed ID: 25647747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of metabolism: the rest-to-work transition in skeletal muscle.
    Wilson DF
    Am J Physiol Endocrinol Metab; 2015 Nov; 309(9):E793-801. PubMed ID: 26394666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors affecting the rate and energetics of mitochondrial oxidative phosphorylation.
    Wilson DF
    Med Sci Sports Exerc; 1994 Jan; 26(1):37-43. PubMed ID: 8133736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics of muscle contraction: the whole is less than the sum of its parts.
    Kushmerick MJ; Conley KE
    Biochem Soc Trans; 2002 Apr; 30(2):227-31. PubMed ID: 12023856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling cellular metabolism and energetics in skeletal muscle: large-scale parameter estimation and sensitivity analysis.
    Dash RK; Li Y; Kim J; Saidel GM; Cabrera ME
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1298-318. PubMed ID: 18390321
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.