These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 24422121)

  • 1. Impact of a local 5-lipoxygenase inhibitor on bone formation during fracture healing.
    Bonekey Rep; 2013; 2():418. PubMed ID: 24422121
    [No Abstract]   [Full Text] [Related]  

  • 2. Pharmacological inhibition of 5-lipoxygenase accelerates and enhances fracture-healing.
    Cottrell JA; O'Connor JP
    J Bone Joint Surg Am; 2009 Nov; 91(11):2653-65. PubMed ID: 19884440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local inhibition of 5-lipoxygenase enhances bone formation in a rat model.
    Cottrell JA; Keshav V; Mitchell A; O'Connor JP
    Bone Joint Res; 2013 Feb; 2(2):41-50. PubMed ID: 23610701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel, non-prostanoid EP2 receptor-selective prostaglandin E2 agonist stimulates local bone formation and enhances fracture healing.
    Li M; Ke HZ; Qi H; Healy DR; Li Y; Crawford DT; Paralkar VM; Owen TA; Cameron KO; Lefker BA; Brown TA; Thompson DD
    J Bone Miner Res; 2003 Nov; 18(11):2033-42. PubMed ID: 14606517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of angiotensin-converting enzyme stimulates fracture healing and periosteal callus formation - role of a local renin-angiotensin system.
    Garcia P; Schwenzer S; Slotta JE; Scheuer C; Tami AE; Holstein JH; Histing T; Burkhardt M; Pohlemann T; Menger MD
    Br J Pharmacol; 2010 Apr; 159(8):1672-80. PubMed ID: 20233225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated fracture healing in mice lacking the 5-lipoxygenase gene.
    Manigrasso MB; O'Connor JP
    Acta Orthop; 2010 Dec; 81(6):748-55. PubMed ID: 21067431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local administration of IKK small molecule inhibitor may enhance fracture healing in osteoporosis patient.
    Han D; Zhang P; Jiang B
    Int J Clin Exp Med; 2015; 8(1):1411-5. PubMed ID: 25785147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implications for fracture healing of current and new osteoporosis treatments: an ESCEO consensus paper.
    Goldhahn J; Féron JM; Kanis J; Papapoulos S; Reginster JY; Rizzoli R; Dere W; Mitlak B; Tsouderos Y; Boonen S
    Calcif Tissue Int; 2012 May; 90(5):343-53. PubMed ID: 22451221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bmp2 conditional knockout in osteoblasts and endothelial cells does not impair bone formation after injury or mechanical loading in adult mice.
    McBride-Gagyi SH; McKenzie JA; Buettmann EG; Gardner MJ; Silva MJ
    Bone; 2015 Dec; 81():533-543. PubMed ID: 26344756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diminished bone formation during diabetic fracture healing is related to the premature resorption of cartilage associated with increased osteoclast activity.
    Kayal RA; Tsatsas D; Bauer MA; Allen B; Al-Sebaei MO; Kakar S; Leone CW; Morgan EF; Gerstenfeld LC; Einhorn TA; Graves DT
    J Bone Miner Res; 2007 Apr; 22(4):560-8. PubMed ID: 17243865
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunohistochemical localization of key arachidonic acid metabolism enzymes during fracture healing in mice.
    Lin HN; O'Connor JP
    PLoS One; 2014; 9(2):e88423. PubMed ID: 24516658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced fracture repair by leukotriene antagonism is characterized by increased chondrocyte proliferation and early bone formation: a novel role of the cysteinyl LT-1 receptor.
    Wixted JJ; Fanning PJ; Gaur T; O'Connell SL; Silva J; Mason-Savas A; Ayers DC; Stein GS; Lian JB
    J Cell Physiol; 2009 Oct; 221(1):31-9. PubMed ID: 19544365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring tissue inflammation and responses to drug treatments in early stages of mice bone fracture using 50 MHz ultrasound.
    Chen YC; Lin YH; Wang SH; Lin SP; Shung KK; Wu CC
    Ultrasonics; 2014 Jan; 54(1):177-86. PubMed ID: 23871514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Bone fracture and the healing mechanisms. Molecular bases of fracture healing].
    Noda M; Nagao M; Hanyu R; Miyai K; Ezura Y
    Clin Calcium; 2009 May; 19(5):634-40. PubMed ID: 19398829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of increased bone formation on fracture healing in mice.
    Beil FT; Barvencik F; Gebauer M; Beil B; Pogoda P; Rueger JM; Ignatius A; Schinke T; Amling M
    J Trauma; 2011 Apr; 70(4):857-62. PubMed ID: 20664377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of MicroRNA-9 Improves Fracture Healing by Modulating the Bone Morphogenetic Protein-7 Pathway.
    Deng J; Wu J; Zhu Y
    Pharmacology; 2019; 104(5-6):352-358. PubMed ID: 31618732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Undisturbed local bone formation capacity in patients with atypical femoral fractures: a case series.
    Bögl HP; Aspenberg P; Schilcher J
    Osteoporos Int; 2017 Aug; 28(8):2439-2444. PubMed ID: 28474166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Matrix metalloproteinases and failed fracture healing.
    Henle P; Zimmermann G; Weiss S
    Bone; 2005 Dec; 37(6):791-8. PubMed ID: 16199217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Local application of a proteasome inhibitor enhances fracture healing in rats.
    Yoshii T; Nyman JS; Yuasa M; Esparza JM; Okawa A; Gutierrez GE
    J Orthop Res; 2015 Aug; 33(8):1197-204. PubMed ID: 25683968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fracture-Targeted Delivery of β-Catenin Agonists via Peptide-Functionalized Nanoparticles Augments Fracture Healing.
    Wang Y; Newman MR; Ackun-Farmmer M; Baranello MP; Sheu TJ; Puzas JE; Benoit DSW
    ACS Nano; 2017 Sep; 11(9):9445-9458. PubMed ID: 28881139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.