These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 24422432)
1. Structure and function of C-terminal domain of aciniform spidroin. Wang S; Huang W; Yang D Biomacromolecules; 2014 Feb; 15(2):468-77. PubMed ID: 24422432 [TBL] [Abstract][Full Text] [Related]
2. Structural and Mechanical Roles for the C-Terminal Nonrepetitive Domain Become Apparent in Recombinant Spider Aciniform Silk. Xu L; Lefèvre T; Orrell KE; Meng Q; Auger M; Liu XQ; Rainey JK Biomacromolecules; 2017 Nov; 18(11):3678-3686. PubMed ID: 28934550 [TBL] [Abstract][Full Text] [Related]
3. C-Terminal Domains of Spider Silk Proteins Having Divergent Structures but Conserved Functional Roles. Li X; Fan JS; Shi M; Lai CC; Li J; Meng Q; Yang D Biomacromolecules; 2022 Apr; 23(4):1643-1651. PubMed ID: 35312302 [TBL] [Abstract][Full Text] [Related]
4. Production and Properties of Triple Chimeric Spidroins. Zhou Y; Rising A; Johansson J; Meng Q Biomacromolecules; 2018 Jul; 19(7):2825-2833. PubMed ID: 29669211 [TBL] [Abstract][Full Text] [Related]
5. Structural characterization of minor ampullate spidroin domains and their distinct roles in fibroin solubility and fiber formation. Gao Z; Lin Z; Huang W; Lai CC; Fan JS; Yang D PLoS One; 2013; 8(2):e56142. PubMed ID: 23418525 [TBL] [Abstract][Full Text] [Related]
6. Domain swap facilitates structural transitions of spider silk protein C-terminal domains. Rat C; Heindl C; Neuweiler H Protein Sci; 2023 Nov; 32(11):e4783. PubMed ID: 37712205 [TBL] [Abstract][Full Text] [Related]
7. Structural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis: implications for fiber formation. Hedhammar M; Rising A; Grip S; Martinez AS; Nordling K; Casals C; Stark M; Johansson J Biochemistry; 2008 Mar; 47(11):3407-17. PubMed ID: 18293938 [TBL] [Abstract][Full Text] [Related]
8. The dimerization mechanism of the N-terminal domain of spider silk proteins is conserved despite extensive sequence divergence. Sarr M; Kitoka K; Walsh-White KA; Kaldmäe M; Metlāns R; Tārs K; Mantese A; Shah D; Landreh M; Rising A; Johansson J; Jaudzems K; Kronqvist N J Biol Chem; 2022 May; 298(5):101913. PubMed ID: 35398358 [TBL] [Abstract][Full Text] [Related]
9. Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family. Hayashi CY; Blackledge TA; Lewis RV Mol Biol Evol; 2004 Oct; 21(10):1950-9. PubMed ID: 15240839 [TBL] [Abstract][Full Text] [Related]
10. Characterization of the second type of aciniform spidroin (AcSp2) provides new insight into design for spidroin-based biomaterials. Wen R; Wang K; Meng Q Acta Biomater; 2020 Oct; 115():210-219. PubMed ID: 32798722 [TBL] [Abstract][Full Text] [Related]
11. Diversified Structural Basis of a Conserved Molecular Mechanism for pH-Dependent Dimerization in Spider Silk N-Terminal Domains. Otikovs M; Chen G; Nordling K; Landreh M; Meng Q; Jörnvall H; Kronqvist N; Rising A; Johansson J; Jaudzems K Chembiochem; 2015 Aug; 16(12):1720-4. PubMed ID: 26033527 [TBL] [Abstract][Full Text] [Related]
12. Novel Highly Soluble Chimeric Recombinant Spidroins with High Yield. Jia Q; Wen R; Meng Q Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32962298 [TBL] [Abstract][Full Text] [Related]
13. Expression and characterization of chimeric spidroins from flagelliform-aciniform repetitive modules. Tian LY; Meng Q; Lin Y Biopolymers; 2020 Dec; 111(12):e23404. PubMed ID: 33075850 [TBL] [Abstract][Full Text] [Related]
14. Molecular cloning and analysis of the full-length aciniform spidroin gene from Araneus ventricosus. Wen R; Wang K; Liu X; Li X; Mi J; Meng Q Int J Biol Macromol; 2018 Oct; 117():1352-1360. PubMed ID: 29269010 [TBL] [Abstract][Full Text] [Related]
15. Major ampullate spidroins from Euprosthenops australis: multiplicity at protein, mRNA and gene levels. Rising A; Johansson J; Larson G; Bongcam-Rudloff E; Engström W; Hjälm G Insect Mol Biol; 2007 Oct; 16(5):551-61. PubMed ID: 17680798 [TBL] [Abstract][Full Text] [Related]
16. Morphology and composition of the spider major ampullate gland and dragline silk. Andersson M; Holm L; Ridderstråle Y; Johansson J; Rising A Biomacromolecules; 2013 Aug; 14(8):2945-52. PubMed ID: 23837699 [TBL] [Abstract][Full Text] [Related]
17. Expansion and intragenic homogenization of spider silk genes since the Triassic: evidence from Mygalomorphae (tarantulas and their kin) spidroins. Garb JE; DiMauro T; Lewis RV; Hayashi CY Mol Biol Evol; 2007 Nov; 24(11):2454-64. PubMed ID: 17728281 [TBL] [Abstract][Full Text] [Related]
18. Properties of two spliceoforms of major ampullate spidroin 1 reveal unique functions of N-linker region. Wang K; Wen R; Meng Q Int J Biol Macromol; 2020 Aug; 157():67-74. PubMed ID: 32339592 [TBL] [Abstract][Full Text] [Related]
19. Conserved C-termini of Spidroins are secreted by the major ampullate glands and retained in the silk thread. Sponner A; Unger E; Grosse F; Weisshart K Biomacromolecules; 2004; 5(3):840-5. PubMed ID: 15132670 [TBL] [Abstract][Full Text] [Related]
20. The three novel complete aciniform spidroin variants from Araneus ventricosus reveal diversity of gene sequences within specific spidroin type. Wen R; Wang K; Meng Q Int J Biol Macromol; 2020 Aug; 157():60-66. PubMed ID: 32335120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]