These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 24422450)

  • 1. Environmental conditions influence eDNA persistence in aquatic systems.
    Barnes MA; Turner CR; Jerde CL; Renshaw MA; Chadderton WL; Lodge DM
    Environ Sci Technol; 2014; 48(3):1819-27. PubMed ID: 24422450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Temperature and Trophic State on Degradation of Environmental DNA in Lake Water.
    Eichmiller JJ; Best SE; Sorensen PW
    Environ Sci Technol; 2016 Feb; 50(4):1859-67. PubMed ID: 26771292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulating the Advection and Degradation of the Environmental DNA of Common Carp along a River.
    Nukazawa K; Hamasuna Y; Suzuki Y
    Environ Sci Technol; 2018 Sep; 52(18):10562-10570. PubMed ID: 30102525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationship between the distribution of common carp and their environmental DNA in a small lake.
    Eichmiller JJ; Bajer PG; Sorensen PW
    PLoS One; 2014; 9(11):e112611. PubMed ID: 25383965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water temperature-dependent degradation of environmental DNA and its relation to bacterial abundance.
    Tsuji S; Ushio M; Sakurai S; Minamoto T; Yamanaka H
    PLoS One; 2017; 12(4):e0176608. PubMed ID: 28448613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diazinon negatively affects the integrity of environmental DNA stability: a case study with common carp (Cyprinus carpio).
    Pourmoghadam MN; Poorbagher H; de Oliveira Fernandes JM; Jafari O
    Environ Monit Assess; 2019 Oct; 191(11):672. PubMed ID: 31650301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing techniques to capture and extract environmental DNA for detection and quantification of fish.
    Eichmiller JJ; Miller LM; Sorensen PW
    Mol Ecol Resour; 2016 Jan; 16(1):56-68. PubMed ID: 25919417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of fish biomass using environmental DNA.
    Takahara T; Minamoto T; Yamanaka H; Doi H; Kawabata Z
    PLoS One; 2012; 7(4):e35868. PubMed ID: 22563411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Are bacteria potential sources of fish environmental DNA?
    Nukazawa K; Akahoshi K; Suzuki Y
    PLoS One; 2020; 15(3):e0230174. PubMed ID: 32163471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water Flow and Biofilm Cover Influence Environmental DNA Detection in Recirculating Streams.
    Shogren AJ; Tank JL; Egan SP; August O; Rosi EJ; Hanrahan BR; Renshaw MA; Gantz CA; Bolster D
    Environ Sci Technol; 2018 Aug; 52(15):8530-8537. PubMed ID: 29995389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved methods for capture, extraction, and quantitative assay of environmental DNA from Asian bigheaded carp (Hypophthalmichthys spp.).
    Turner CR; Miller DJ; Coyne KJ; Corush J
    PLoS One; 2014; 9(12):e114329. PubMed ID: 25474207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys.
    Doi H; Uchii K; Takahara T; Matsuhashi S; Yamanaka H; Minamoto T
    PLoS One; 2015; 10(3):e0122763. PubMed ID: 25799582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shedding light on eDNA: neither natural levels of UV radiation nor the presence of a filter feeder affect eDNA-based detection of aquatic organisms.
    Mächler E; Osathanunkul M; Altermatt F
    PLoS One; 2018; 13(4):e0195529. PubMed ID: 29624607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle size influences decay rates of environmental DNA in aquatic systems.
    Brandão-Dias PFP; Hallack DMC; Snyder ED; Tank JL; Bolster D; Volponi S; Shogren AJ; Lamberti GA; Bibby K; Egan SP
    Mol Ecol Resour; 2023 May; 23(4):756-770. PubMed ID: 36633071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection limits of quantitative and digital PCR assays and their influence in presence-absence surveys of environmental DNA.
    Hunter ME; Dorazio RM; Butterfield JS; Meigs-Friend G; Nico LG; Ferrante JA
    Mol Ecol Resour; 2017 Mar; 17(2):221-229. PubMed ID: 27768244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Making sense of the noise: The effect of hydrology on silver carp eDNA detection in the Chicago area waterway system.
    Song JW; Small MJ; Casman EA
    Sci Total Environ; 2017 Dec; 605-606():713-720. PubMed ID: 28675881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. No filters, no fridges: a method for preservation of water samples for eDNA analysis.
    Williams KE; Huyvaert KP; Piaggio AJ
    BMC Res Notes; 2016 Jun; 9():298. PubMed ID: 27278936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclear internal transcribed spacer-1 as a sensitive genetic marker for environmental DNA studies in common carp Cyprinus carpio.
    Minamoto T; Uchii K; Takahara T; Kitayoshi T; Tsuji S; Yamanaka H; Doi H
    Mol Ecol Resour; 2017 Mar; 17(2):324-333. PubMed ID: 27487846
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Persistence of environmental DNA in marine systems.
    Collins RA; Wangensteen OS; O'Gorman EJ; Mariani S; Sims DW; Genner MJ
    Commun Biol; 2018; 1():185. PubMed ID: 30417122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refinement of eDNA as an early monitoring tool at the landscape-level: study design considerations.
    Mize EL; Erickson RA; Merkes CM; Berndt N; Bockrath K; Credico J; Grueneis N; Merry J; Mosel K; Tuttle-Lau M; Von Ruden K; Woiak Z; Amberg JJ; Baerwaldt K; Finney S; Monroe E
    Ecol Appl; 2019 Sep; 29(6):e01951. PubMed ID: 31188494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.