These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1179 related articles for article (PubMed ID: 24422455)
41. Influence on the Apparent Luminescent Lifetime of Rare-Earth Upconversion Nanoparticles by Quenching the Sensitizer's Excited State for Hypochlorous Acid Detection and Bioimaging. Chai Y; Zhou X; Chen X; Wen C; Ke J; Feng W; Li F ACS Appl Mater Interfaces; 2022 Mar; 14(12):14004-14011. PubMed ID: 35297600 [TBL] [Abstract][Full Text] [Related]
42. Optimization of upconversion luminescence of Nd(3+)-sensitized BaGdF5-based nanostructures and their application in dual-modality imaging and drug delivery. He F; Li C; Zhang X; Chen Y; Deng X; Liu B; Hou Z; Huang S; Jin D; Lin J Dalton Trans; 2016 Jan; 45(4):1708-16. PubMed ID: 26700503 [TBL] [Abstract][Full Text] [Related]
43. Prevalence of anisotropic shell growth in rare earth core-shell upconversion nanocrystals. Zhang C; Lee JY ACS Nano; 2013 May; 7(5):4393-402. PubMed ID: 23570424 [TBL] [Abstract][Full Text] [Related]
44. Facile synthesis of near-infrared-excited NaYF Zhao B; Li Y Talanta; 2018 Mar; 179():478-484. PubMed ID: 29310263 [TBL] [Abstract][Full Text] [Related]
45. Monodispersed LaF3 nanocrystals: shape-controllable synthesis, excitation-power-dependent multi-color tuning and intense near-infrared upconversion emission. Rao L; Lu W; Ren G; Wang H; Yi Z; Liu H; Zeng S Nanotechnology; 2014 Feb; 25(6):065703. PubMed ID: 24434274 [TBL] [Abstract][Full Text] [Related]
46. Emission color tuning of core/shell upconversion nanoparticles through modulation of laser power or temperature. Shao Q; Zhang G; Ouyang L; Hu Y; Dong Y; Jiang J Nanoscale; 2017 Aug; 9(33):12132-12141. PubMed ID: 28805873 [TBL] [Abstract][Full Text] [Related]
47. Radioisotope post-labeling upconversion nanophosphors for in vivo quantitative tracking. Sun Y; Liu Q; Peng J; Feng W; Zhang Y; Yang P; Li F Biomaterials; 2013 Mar; 34(9):2289-95. PubMed ID: 23274071 [TBL] [Abstract][Full Text] [Related]
48. 808 nm excited energy migration upconversion nanoparticles driven by a Nd Guo S; Tsang MK; Lo WS; Hao J; Wong WT Nanoscale; 2018 Feb; 10(6):2790-2803. PubMed ID: 29359778 [TBL] [Abstract][Full Text] [Related]
49. Markedly enhanced up-conversion luminescence by combining IR-808 dye sensitization and core-shell-shell structures. Xu J; Sun M; Kuang Y; Bi H; Liu B; Yang D; Lv R; Gai S; He F; Yang P Dalton Trans; 2017 Jan; 46(5):1495-1501. PubMed ID: 28091663 [TBL] [Abstract][Full Text] [Related]
50. Control synthesis, subtle surface modification of rare-earth-doped upconversion nanoparticles and their applications in cancer diagnosis and treatment. Hong E; Liu L; Bai L; Xia C; Gao L; Zhang L; Wang B Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110097. PubMed ID: 31546381 [TBL] [Abstract][Full Text] [Related]
51. Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. Zhou J; Sun Y; Du X; Xiong L; Hu H; Li F Biomaterials; 2010 Apr; 31(12):3287-95. PubMed ID: 20132982 [TBL] [Abstract][Full Text] [Related]
52. Toward Accurate Photoluminescence Nanothermometry Using Rare-Earth Doped Nanoparticles for Biomedical Applications. Liu M; Liang J; Vetrone F Acc Chem Res; 2024 Sep; 57(18):2653-2664. PubMed ID: 39192666 [TBL] [Abstract][Full Text] [Related]
53. Rare Earth Hydroxide as a Precursor for Controlled Fabrication of Uniform β-NaYF₄ Nanoparticles: A Novel, Low Cost, and Facile Method. Xu L; Wang M; Chen Q; Yang J; Zheng W; Lv G; Quan Z; Li C Molecules; 2019 Jan; 24(2):. PubMed ID: 30669489 [TBL] [Abstract][Full Text] [Related]
54. Photon upconversion in core-shell nanoparticles. Chen X; Peng D; Ju Q; Wang F Chem Soc Rev; 2015 Mar; 44(6):1318-30. PubMed ID: 25058157 [TBL] [Abstract][Full Text] [Related]
55. Tri-color upconversion luminescence of Rare earth doped BaTiO3 nanocrystals and lowered color separation. Liu Y; Pisarski WA; Zeng S; Xu C; Yang Q Opt Express; 2009 May; 17(11):9089-98. PubMed ID: 19466159 [TBL] [Abstract][Full Text] [Related]
56. One-step hydrothermal synthesis of carboxyl-functionalized upconversion phosphors for bioapplications. Yang J; Shen D; Li X; Li W; Fang Y; Wei Y; Yao C; Tu B; Zhang F; Zhao D Chemistry; 2012 Oct; 18(43):13642-50. PubMed ID: 22996059 [TBL] [Abstract][Full Text] [Related]
57. Strategy to Achieve a Pure Red/Green/Blue-Emitting Upconversion Luminescence for Full-Color Displays. Farooq F; Shin S; Lee JY; Kyhm J; Kang G; Ko H; Jang HS ACS Appl Mater Interfaces; 2024 Jul; 16(29):38221-38230. PubMed ID: 39007302 [TBL] [Abstract][Full Text] [Related]
58. Quench-Shield Ratiometric Upconversion Luminescence Nanoplatform for Biosensing. Wu YX; Zhang XB; Zhang DL; Zhang CC; Li JB; Wu Y; Song ZL; Yu RQ; Tan W Anal Chem; 2016 Feb; 88(3):1639-46. PubMed ID: 26744211 [TBL] [Abstract][Full Text] [Related]
59. Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Cheng L; Wang C; Liu Z Nanoscale; 2013 Jan; 5(1):23-37. PubMed ID: 23135546 [TBL] [Abstract][Full Text] [Related]