BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 24422458)

  • 41. Xerogel based catalyst for improved cathode performance in microbial fuel cells.
    Thapa BS; Seetharaman S; Chetty R; Chandra TS
    Enzyme Microb Technol; 2019 May; 124():1-8. PubMed ID: 30797474
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of platinum supported on single-walled carbon nanotubes by deposition-precipitation for microbial fuel cells.
    Pusomjit P; Chailapakul O; Ng HY; Thepsuparungsikul N
    Water Sci Technol; 2018 Jul; 2017(3):887-895. PubMed ID: 30016306
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Simultaneous sulfamethoxazole degradation with electricity generation by microbial fuel cells using Ni-MOF-74 as cathode catalysts and quantification of antibiotic resistance genes.
    Li S; Zhu X; Yu H; Wang X; Liu X; Yang H; Li F; Zhou Q
    Environ Res; 2021 Jun; 197():111054. PubMed ID: 33775682
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Power generation using spinel manganese-cobalt oxide as a cathode catalyst for microbial fuel cell applications.
    Mahmoud M; Gad-Allah TA; El-Khatib KM; El-Gohary F
    Bioresour Technol; 2011 Nov; 102(22):10459-64. PubMed ID: 21944282
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Challenges and constraints of using oxygen cathodes in microbial fuel cells.
    Zhao F; Harnisch F; Schröder U; Scholz F; Bogdanoff P; Herrmann I
    Environ Sci Technol; 2006 Sep; 40(17):5193-9. PubMed ID: 16999088
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evaluating a multi-panel air cathode through electrochemical and biotic tests.
    Rossi R; Jones D; Myung J; Zikmund E; Yang W; Gallego YA; Pant D; Evans PJ; Page MA; Cropek DM; Logan BE
    Water Res; 2019 Jan; 148():51-59. PubMed ID: 30343198
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Long-term operation of bio-catalyzed cathodes within continuous flow membrane-less microbial fuel cells.
    Chang CC; Li SL; Hu A; Yu CP
    Chemosphere; 2021 Mar; 266():129059. PubMed ID: 33250234
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The excellent performance of nest-like oxygen-deficient Cu
    Wang J; Tian P; Li K; Ge B; Liu D; Liu Y; Yang T; Ren R
    Bioresour Technol; 2016 Dec; 222():107-113. PubMed ID: 27716562
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Remediation of simulated malodorous surface water by columnar air-cathode microbial fuel cells.
    Wang H; Fu B; Xi J; Hu HY; Liang P; Huang X; Zhang X
    Sci Total Environ; 2019 Oct; 687():287-296. PubMed ID: 31207518
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of different morphology of three-dimensional Cu(x)O with mixed facets modified air-cathodes on microbial fuel cell.
    Liu Z; Li K; Zhang X; Ge B; Pu L
    Bioresour Technol; 2015 Nov; 195():154-61. PubMed ID: 26122090
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The performance of phosphorus (P)-doped activated carbon as a catalyst in air-cathode microbial fuel cells.
    Chen Z; Li K; Pu L
    Bioresour Technol; 2014 Oct; 170():379-384. PubMed ID: 25151475
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhanced performance of an air-cathode microbial fuel cell with oxygen supply from an externally connected algal bioreactor.
    Kakarla R; Kim JR; Jeon BH; Min B
    Bioresour Technol; 2015 Nov; 195():210-6. PubMed ID: 26188984
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrical performance of low cost cathodes prepared by plasma sputtering deposition in microbial fuel cells.
    Lefebvre O; Tang Z; Fung MP; Chua DH; Chang IS; Ng HY
    Biosens Bioelectron; 2012 Jan; 31(1):164-9. PubMed ID: 22061267
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electricity generation by microbial fuel cell using microorganisms as catalyst in cathode.
    Jang JK; Kan J; Bretschger O; Gorby YA; Hsu L; Kim BH; Nealson KH
    J Microbiol Biotechnol; 2013 Dec; 23(12):1765-73. PubMed ID: 24225369
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Boosted activity of graphene encapsulated CoFe alloys by blending with activated carbon for oxygen reduction reaction.
    Lv C; Liang B; Li K; Zhao Y; Sun H
    Biosens Bioelectron; 2018 Oct; 117():802-809. PubMed ID: 30096734
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes.
    Zhu N; Chen X; Zhang T; Wu P; Li P; Wu J
    Bioresour Technol; 2011 Jan; 102(1):422-6. PubMed ID: 20594833
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Polyvinylidene fluoride effects on the electrocatalytic properties of air cathodes in microbial fuel cells.
    Wang G; Duan X; Wang D; Dong X; Zhang X
    Bioelectrochemistry; 2018 Apr; 120():138-144. PubMed ID: 29253736
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Insight into the performance discrepancy of GAC and CAC as air-cathode materials in constructed wetland-microbial fuel cell system.
    Ji B; Zhao Y; Yang Y; Tang C; Dai Y; Zhang X; Tai Y; Tao R; Ruan W
    Sci Total Environ; 2022 Feb; 808():152078. PubMed ID: 34863746
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Optimization of a Pt-free cathode suitable for practical applications of microbial fuel cells.
    Lefebvre O; Ooi WK; Tang Z; Abdullah-Al-Mamun M; Chua DH; Ng HY
    Bioresour Technol; 2009 Oct; 100(20):4907-10. PubMed ID: 19464880
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of Co-naphthalocyanine (CoNPc) as alternative cathode catalyst and support structure for microbial fuel cells.
    Kim JR; Kim JY; Han SB; Park KW; Saratale GD; Oh SE
    Bioresour Technol; 2011 Jan; 102(1):342-7. PubMed ID: 20656480
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.