BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 24422588)

  • 1. Phage therapy in the food industry.
    Endersen L; O'Mahony J; Hill C; Ross RP; McAuliffe O; Coffey A
    Annu Rev Food Sci Technol; 2014; 5():327-49. PubMed ID: 24422588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens.
    Sulakvelidze A
    J Sci Food Agric; 2013 Oct; 93(13):3137-46. PubMed ID: 23670852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-harvest application of lytic bacteriophages for biocontrol of foodborne pathogens and spoilage bacteria.
    Hertwig S; Hammerl JA; Appel B; Alter T
    Berl Munch Tierarztl Wochenschr; 2013; 126(9-10):357-69. PubMed ID: 24199377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation for possible source(s) of contamination of ready-to-eat meat products with Listeria spp. and other pathogens in a meat processing plant in Trinidad.
    Gibbons IS; Adesiyun A; Seepersadsingh N; Rahaman S
    Food Microbiol; 2006 Jun; 23(4):359-66. PubMed ID: 16943025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacteriophages as biocontrol agents of food pathogens.
    Mahony J; McAuliffe O; Ross RP; van Sinderen D
    Curr Opin Biotechnol; 2011 Apr; 22(2):157-63. PubMed ID: 21115341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phages in the global fruit and vegetable industry.
    Żaczek M; Weber-Dąbrowska B; Górski A
    J Appl Microbiol; 2015 Mar; 118(3):537-56. PubMed ID: 25410419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of microbial antagonism to reduce pathogen levels on produce and meat products: a review.
    Kostrzynska M; Bachand A
    Can J Microbiol; 2006 Nov; 52(11):1017-26. PubMed ID: 17215892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application and challenge of bacteriophage in the food protection.
    Ge H; Fu S; Guo H; Hu M; Xu Z; Zhou X; Chen X; Jiao X
    Int J Food Microbiol; 2022 Nov; 380():109872. PubMed ID: 35981493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The concept of using bacteriophages to improve the microbiological quality of minimally processed foods.
    Wójcicki M; Błażejak S; Gientka I; Brzezicka K
    Acta Sci Pol Technol Aliment; 2019; 18(4):373-383. PubMed ID: 31930789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overview of current meat hygiene and safety risks and summary of recent studies on biofilms, and control of Escherichia coli O157:H7 in nonintact, and Listeria monocytogenes in ready-to-eat, meat products.
    Sofos JN; Geornaras I
    Meat Sci; 2010 Sep; 86(1):2-14. PubMed ID: 20510532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Risk assessment strategies for Europe: integrated safety strategy or final product control: Example of Listeria monocytogenes in processed products from pork meat industry.
    Salvat G; Fravalo P
    Dtsch Tierarztl Wochenschr; 2004 Aug; 111(8):331-4. PubMed ID: 15469063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contaminants in feed for food-producing animals.
    Moreno-López J
    Pol J Vet Sci; 2002; 5(2):123-5. PubMed ID: 12189948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viable bacterial population and persistence of foodborne pathogens on the pear carpoplane.
    Duvenage FJ; Duvenage S; Du Plessis EM; Volschenk Q; Korsten L
    J Sci Food Agric; 2017 Mar; 97(4):1185-1192. PubMed ID: 27300139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antimicrobial resistance profile of five major food-borne pathogens isolated from beef, pork and poultry.
    Mayrhofer S; Paulsen P; Smulders FJ; Hilbert F
    Int J Food Microbiol; 2004 Dec; 97(1):23-9. PubMed ID: 15527915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic review and meta-analysis: the efficiency of bacteriophages previously patented against pathogenic bacteria on food.
    Romero-Calle DX; de Santana VP; Benevides RG; Aliaga MTA; Billington C; Góes-Neto A
    Syst Rev; 2023 Oct; 12(1):201. PubMed ID: 37898821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential to use ultraviolet-treated bacteriophages to control foodborne pathogens.
    Hudson JA; Bigwood T; Premaratne A; Billington C; Horn B; McIntyre L
    Foodborne Pathog Dis; 2010 Jun; 7(6):687-93. PubMed ID: 20113208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of bacteriophages for detection and control of foodborne pathogens.
    Hagens S; Loessner MJ
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):513-9. PubMed ID: 17554535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacteriophage and endolysin engineering for biocontrol of food pathogens/pathogens in the food: recent advances and future trends.
    Lee C; Kim H; Ryu S
    Crit Rev Food Sci Nutr; 2023; 63(27):8919-8938. PubMed ID: 35400249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental responses and phage susceptibility in foodborne pathogens: implications for improving applications in food safety.
    Denes T; Wiedmann M
    Curr Opin Biotechnol; 2014 Apr; 26():45-9. PubMed ID: 24679257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Outbreaks and factors influencing microbiological contamination of fresh produce.
    Wadamori Y; Gooneratne R; Hussain MA
    J Sci Food Agric; 2017 Mar; 97(5):1396-1403. PubMed ID: 27807844
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.