These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

468 related articles for article (PubMed ID: 24422588)

  • 1. Phage therapy in the food industry.
    Endersen L; O'Mahony J; Hill C; Ross RP; McAuliffe O; Coffey A
    Annu Rev Food Sci Technol; 2014; 5():327-49. PubMed ID: 24422588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens.
    Sulakvelidze A
    J Sci Food Agric; 2013 Oct; 93(13):3137-46. PubMed ID: 23670852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-harvest application of lytic bacteriophages for biocontrol of foodborne pathogens and spoilage bacteria.
    Hertwig S; Hammerl JA; Appel B; Alter T
    Berl Munch Tierarztl Wochenschr; 2013; 126(9-10):357-69. PubMed ID: 24199377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation for possible source(s) of contamination of ready-to-eat meat products with Listeria spp. and other pathogens in a meat processing plant in Trinidad.
    Gibbons IS; Adesiyun A; Seepersadsingh N; Rahaman S
    Food Microbiol; 2006 Jun; 23(4):359-66. PubMed ID: 16943025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacteriophages as biocontrol agents of food pathogens.
    Mahony J; McAuliffe O; Ross RP; van Sinderen D
    Curr Opin Biotechnol; 2011 Apr; 22(2):157-63. PubMed ID: 21115341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phages in the global fruit and vegetable industry.
    Żaczek M; Weber-Dąbrowska B; Górski A
    J Appl Microbiol; 2015 Mar; 118(3):537-56. PubMed ID: 25410419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of microbial antagonism to reduce pathogen levels on produce and meat products: a review.
    Kostrzynska M; Bachand A
    Can J Microbiol; 2006 Nov; 52(11):1017-26. PubMed ID: 17215892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application and challenge of bacteriophage in the food protection.
    Ge H; Fu S; Guo H; Hu M; Xu Z; Zhou X; Chen X; Jiao X
    Int J Food Microbiol; 2022 Nov; 380():109872. PubMed ID: 35981493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The concept of using bacteriophages to improve the microbiological quality of minimally processed foods.
    Wójcicki M; Błażejak S; Gientka I; Brzezicka K
    Acta Sci Pol Technol Aliment; 2019; 18(4):373-383. PubMed ID: 31930789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overview of current meat hygiene and safety risks and summary of recent studies on biofilms, and control of Escherichia coli O157:H7 in nonintact, and Listeria monocytogenes in ready-to-eat, meat products.
    Sofos JN; Geornaras I
    Meat Sci; 2010 Sep; 86(1):2-14. PubMed ID: 20510532
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Risk assessment strategies for Europe: integrated safety strategy or final product control: Example of Listeria monocytogenes in processed products from pork meat industry.
    Salvat G; Fravalo P
    Dtsch Tierarztl Wochenschr; 2004 Aug; 111(8):331-4. PubMed ID: 15469063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contaminants in feed for food-producing animals.
    Moreno-López J
    Pol J Vet Sci; 2002; 5(2):123-5. PubMed ID: 12189948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacteriophages: a potential game changer in food processing industry.
    Chaudhary V; Kajla P; Lather D; Chaudhary N; Dangi P; Singh P; Pandiselvam R
    Crit Rev Biotechnol; 2024 Nov; 44(7):1325-1349. PubMed ID: 38228500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viable bacterial population and persistence of foodborne pathogens on the pear carpoplane.
    Duvenage FJ; Duvenage S; Du Plessis EM; Volschenk Q; Korsten L
    J Sci Food Agric; 2017 Mar; 97(4):1185-1192. PubMed ID: 27300139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial resistance profile of five major food-borne pathogens isolated from beef, pork and poultry.
    Mayrhofer S; Paulsen P; Smulders FJ; Hilbert F
    Int J Food Microbiol; 2004 Dec; 97(1):23-9. PubMed ID: 15527915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic review and meta-analysis: the efficiency of bacteriophages previously patented against pathogenic bacteria on food.
    Romero-Calle DX; de Santana VP; Benevides RG; Aliaga MTA; Billington C; Góes-Neto A
    Syst Rev; 2023 Oct; 12(1):201. PubMed ID: 37898821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential to use ultraviolet-treated bacteriophages to control foodborne pathogens.
    Hudson JA; Bigwood T; Premaratne A; Billington C; Horn B; McIntyre L
    Foodborne Pathog Dis; 2010 Jun; 7(6):687-93. PubMed ID: 20113208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of bacteriophages for detection and control of foodborne pathogens.
    Hagens S; Loessner MJ
    Appl Microbiol Biotechnol; 2007 Sep; 76(3):513-9. PubMed ID: 17554535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacteriophage and endolysin engineering for biocontrol of food pathogens/pathogens in the food: recent advances and future trends.
    Lee C; Kim H; Ryu S
    Crit Rev Food Sci Nutr; 2023; 63(27):8919-8938. PubMed ID: 35400249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in the applications of Bacteriophages and phage products against food-contaminating bacteria.
    E S; Gummadi SN
    Crit Rev Microbiol; 2024 Sep; 50(5):702-727. PubMed ID: 37861086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.