BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 24423252)

  • 21. Analysis of in vivo single cell behavior by high throughput, human-in-the-loop segmentation of three-dimensional images.
    Chiang M; Hallman S; Cinquin A; de Mochel NR; Paz A; Kawauchi S; Calof AL; Cho KW; Fowlkes CC; Cinquin O
    BMC Bioinformatics; 2015 Nov; 16():397. PubMed ID: 26607933
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3DeeCellTracker, a deep learning-based pipeline for segmenting and tracking cells in 3D time lapse images.
    Wen C; Miura T; Voleti V; Yamaguchi K; Tsutsumi M; Yamamoto K; Otomo K; Fujie Y; Teramoto T; Ishihara T; Aoki K; Nemoto T; Hillman EM; Kimura KD
    Elife; 2021 Mar; 10():. PubMed ID: 33781383
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Establishment of a morphological atlas of the Caenorhabditis elegans embryo using deep-learning-based 4D segmentation.
    Cao J; Guan G; Ho VWS; Wong MK; Chan LY; Tang C; Zhao Z; Yan H
    Nat Commun; 2020 Dec; 11(1):6254. PubMed ID: 33288755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel generic dictionary-based denoising method for improving noisy and densely packed nuclei segmentation in 3D time-lapse fluorescence microscopy images.
    Nasser L; Boudier T
    Sci Rep; 2019 Apr; 9(1):5654. PubMed ID: 30948741
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CellECT: cell evolution capturing tool.
    Delibaltov DL; Gaur U; Kim J; Kourakis M; Newman-Smith E; Smith W; Belteton SA; Szymanski DB; Manjunath BS
    BMC Bioinformatics; 2016 Feb; 17():88. PubMed ID: 26887436
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A high-throughput system for segmenting nuclei using multiscale techniques.
    Gudla PR; Nandy K; Collins J; Meaburn KJ; Misteli T; Lockett SJ
    Cytometry A; 2008 May; 73(5):451-66. PubMed ID: 18338778
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ranked retrieval of segmented nuclei for objective assessment of cancer gene repositioning.
    Cukierski WJ; Nandy K; Gudla P; Meaburn KJ; Misteli T; Foran DJ; Lockett SJ
    BMC Bioinformatics; 2012 Sep; 13():232. PubMed ID: 22971117
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D convolutional neural networks-based segmentation to acquire quantitative criteria of the nucleus during mouse embryogenesis.
    Tokuoka Y; Yamada TG; Mashiko D; Ikeda Z; Hiroi NF; Kobayashi TJ; Yamagata K; Funahashi A
    NPJ Syst Biol Appl; 2020 Oct; 6(1):32. PubMed ID: 33082352
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automatic detection of lung nodules in CT datasets based on stable 3D mass-spring models.
    Cascio D; Magro R; Fauci F; Iacomi M; Raso G
    Comput Biol Med; 2012 Nov; 42(11):1098-109. PubMed ID: 23020972
    [TBL] [Abstract][Full Text] [Related]  

  • 30. SPI: a tool for incorporating gene expression data into a four-dimensional database of Caenorhabditis elegans embryogenesis.
    Minakuchi Y; Ito M; Kohara Y
    Bioinformatics; 2004 May; 20(7):1097-109. PubMed ID: 14764544
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Non-rigid registration of 3D multi-channel microscopy images of cell nuclei.
    Yang S; Köhler D; Teller K; Cremer T; Le Baccon P; Heard E; Eils R; Rohr K
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):907-14. PubMed ID: 17354977
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fast unsupervised nuclear segmentation and classification scheme for automatic allred cancer scoring in immunohistochemical breast tissue images.
    Mouelhi A; Rmili H; Ali JB; Sayadi M; Doghri R; Mrad K
    Comput Methods Programs Biomed; 2018 Oct; 165():37-51. PubMed ID: 30337080
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved and robust detection of cell nuclei from four dimensional fluorescence images.
    Bashar MK; Yamagata K; Kobayashi TJ
    PLoS One; 2014; 9(7):e101891. PubMed ID: 25020042
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dense nuclei segmentation based on graph cut and convexity-concavity analysis.
    Qi J
    J Microsc; 2014 Jan; 253(1):42-53. PubMed ID: 24237576
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NucleusJ: an ImageJ plugin for quantifying 3D images of interphase nuclei.
    Poulet A; Arganda-Carreras I; Legland D; Probst AV; Andrey P; Tatout C
    Bioinformatics; 2015 Apr; 31(7):1144-6. PubMed ID: 25416749
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Simultaneous recognition and segmentation of cells: application in C.elegans.
    Qu L; Long F; Liu X; Kim S; Myers E; Peng H
    Bioinformatics; 2011 Oct; 27(20):2895-902. PubMed ID: 21849395
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Segmentation of densely populated cell nuclei from confocal image stacks using 3D non-parametric shape priors.
    Ong LL; Wang M; Dauwels J; Asada HH
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5526-9. PubMed ID: 25571246
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D-DIASemb: a computer-assisted system for reconstructing and motion analyzing in 4D every cell and nucleus in a developing embryo.
    Heid PJ; Voss E; Soll DR
    Dev Biol; 2002 May; 245(2):329-47. PubMed ID: 11977985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ASSET: a robust algorithm for the automated segmentation and standardization of early Caenorhabditis elegans embryos.
    Blanchoud S; Budirahardja Y; Naef F; Gönczy P
    Dev Dyn; 2010 Dec; 239(12):3285-96. PubMed ID: 21089077
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automatic segmentation of cell nuclei in bladder and skin tissue for karyometric analysis.
    Korde VR; Bartels H; Barton J; Ranger-Moore J
    Anal Quant Cytol Histol; 2009 Apr; 31(2):83-9. PubMed ID: 19402384
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.