These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 2442326)

  • 1. Localization of sodium channel subtypes in adult rat skeletal muscle using channel-specific monoclonal antibodies.
    Haimovich B; Schotland DL; Fieles WE; Barchi RL
    J Neurosci; 1987 Sep; 7(9):2957-66. PubMed ID: 2442326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of sodium channel subtypes during development in rat skeletal muscle.
    Schotland DL; Fieles W; Barchi RL
    Muscle Nerve; 1991 Feb; 14(2):142-51. PubMed ID: 1847990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distribution of (Na+ + K+)ATPase and sodium channels in skeletal muscle and electroplax.
    Ariyasu RG; Deerinck TJ; Levinson SR; Ellisman MH
    J Neurocytol; 1987 Aug; 16(4):511-22. PubMed ID: 2445928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of myosin isoenzymes among skeletal muscle fiber types.
    Gauthier GF; Lowey S
    J Cell Biol; 1979 Apr; 81(1):10-25. PubMed ID: 90047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunocytochemical localization of the mammalian voltage-dependent sodium channel using polyclonal antibodies against the purified protein.
    Haimovich B; Bonilla E; Casadei J; Barchi R
    J Neurosci; 1984 Sep; 4(9):2259-68. PubMed ID: 6090613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of excitable membranes. II. A comparison of specializations at neuromuscular junctions and nonjunctional sarcolemmas of mammalian fast and slow twitch muscle fibers.
    Ellisman MH; Rash JE; Staehelin LA; Porter KR
    J Cell Biol; 1976 Mar; 68(3):752-74. PubMed ID: 1030710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monoclonal antibodies against the voltage-sensitive Na+ channel from mammalian skeletal muscle.
    Casadei JM; Gordon RD; Lampson LA; Schotland DL; Barchi RL
    Proc Natl Acad Sci U S A; 1984 Oct; 81(19):6227-31. PubMed ID: 6207539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beta-adrenergic receptor distribution among muscle fiber types and resistance arterioles of white, red, and intermediate skeletal muscle.
    Martin WH; Murphree SS; Saffitz JE
    Circ Res; 1989 Jun; 64(6):1096-105. PubMed ID: 2541942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium channel slow inactivation and the distribution of sodium channels on skeletal muscle fibres enable the performance properties of different skeletal muscle fibre types.
    Ruff RL
    Acta Physiol Scand; 1996 Mar; 156(3):159-68. PubMed ID: 8729676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of calcium ATPase in the sarcoplasmic reticulum of fast- and slow-twitch muscles determined with monoclonal antibodies.
    Dulhunty AF; Banyard MR; Medveczky CJ
    J Membr Biol; 1987; 99(2):79-92. PubMed ID: 2963132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na+ currents near and away from endplates on human fast and slow twitch muscle fibers.
    Ruff RL; Whittlesey D
    Muscle Nerve; 1993 Sep; 16(9):922-9. PubMed ID: 8355723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuromuscular specializations of the pharyngeal dilator muscles: II. Compartmentalization of the canine genioglossus muscle.
    Mu L; Sanders I
    Anat Rec; 2000 Nov; 260(3):308-25. PubMed ID: 11066041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diversity in expression of myosin heavy chain isoforms and M-band proteins in rat muscle spindles.
    Pedrosa F; Butler-Browne GS; Dhoot GK; Fischman DA; Thornell LE
    Histochemistry; 1989; 92(3):185-94. PubMed ID: 2476423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunoaffinity isolation of Na+ channels from rat skeletal muscle. Analysis of subunits.
    Casadei JM; Gordon RD; Barchi RL
    J Biol Chem; 1986 Mar; 261(9):4318-23. PubMed ID: 2419342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alterations in neuromuscular junction morphology during fast-to-slow transformation of rabbit skeletal muscles.
    Somasekhar T; Nordlander RH; Reiser PJ
    J Neurocytol; 1996 May; 25(5):315-31. PubMed ID: 8818976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of sarcolemma-associated antigens with differential distributions on fast and slow skeletal muscle fibers.
    Schafer DA; Stockdale FE
    J Cell Biol; 1987 Apr; 104(4):967-79. PubMed ID: 3549741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scanning electron microscope study of neuromuscular junctions in different muscle fiber types in the zebra finch and rat.
    Oki S; Matsuda Y; Kitaoka K; Nagano Y; Nojima M; Desaki J
    Arch Histol Cytol; 1990 Jul; 53(3):327-32. PubMed ID: 2390332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of slow-tonic MyHC immunoreactivity is an important step in the evaluation of muscle spindles in porcine extraocular muscles.
    Friedrich C; Lemm B; Soukup T; Asmussen G
    Exp Eye Res; 2007 Jul; 85(1):54-64. PubMed ID: 17467694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of excitability parameters and sodium channel behavior of fast- and slow-twitch rat skeletal muscles for the study of the effects of hindlimb suspension, a model of hypogravity.
    Desaphy JF; Pierno S; Liantonio A; De Luca A; Leoty C; Conte Camerino D
    J Gravit Physiol; 1998 Jul; 5(1):P77-8. PubMed ID: 11542373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fiber-type proportions in mammalian soleus muscle during postnatal development.
    Wigston DJ; English AW
    J Neurobiol; 1992 Feb; 23(1):61-70. PubMed ID: 1564455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.