These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 24423273)

  • 41. Hormone-inducible expression and metal affinity chromatography of recombinant proteins in Saccharomyces cerevisiae.
    Clausen M; Lamb CJ; Megnet R; Doerner PW
    Anal Biochem; 1993 Aug; 212(2):537-9. PubMed ID: 8214597
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Cross-and-Capture system: a versatile tool in yeast proteomics.
    Suter B
    Methods; 2012 Dec; 58(4):360-6. PubMed ID: 22836129
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel culture method for high level production of heterologous protein in Saccharomyces cerevisiae.
    Nagashima T; Yamamoto Y; Gomi K; Kitamoto K; Kumagai C
    Biosci Biotechnol Biochem; 1994 Jul; 58(7):1292-6. PubMed ID: 7765252
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Development and application of Saccharomyces cerevisiae cell-surface display for bioethanol production].
    Yang F; Cao M; Jin Y; Yang X; Tian S
    Sheng Wu Gong Cheng Xue Bao; 2012 Aug; 28(8):901-11. PubMed ID: 23185890
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ergosterol production from molasses by genetically modified Saccharomyces cerevisiae.
    He X; Guo X; Liu N; Zhang B
    Appl Microbiol Biotechnol; 2007 May; 75(1):55-60. PubMed ID: 17225097
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Two-step cell disruption for the extraction of membrane-associated recombinant protein from Saccharomyces cerevisiae.
    Chi WK; Ku CH; Chang CC; Tsai JN
    Ann N Y Acad Sci; 1994 May; 721():365-73. PubMed ID: 8010685
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optimisation of expression and purification of the recombinant Yol066 (Rib2) protein from Saccharomyces cerevisiae.
    Urban A; Ansmant I; Motorin Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2003 Mar; 786(1-2):187-95. PubMed ID: 12651014
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Expression and purification of arrestin in yeast Saccharomyces cerevisiae.
    Schlesinger R; Cousin A; Granzin J; Batra-Safferling R
    Methods Cell Biol; 2017; 142():159-172. PubMed ID: 28964334
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Membrane Protein Production in the Yeast, S. cerevisiae.
    Cartwright SP; Mikaliunaite L; Bill RM
    Methods Mol Biol; 2016; 1432():23-35. PubMed ID: 27485327
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Budding yeast protein extraction and purification for the study of function, interactions, and post-translational modifications.
    Szymanski EP; Kerscher O
    J Vis Exp; 2013 Oct; (80):e50921. PubMed ID: 24300101
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Large-scale overexpression and purification of ADARs from Saccharomyces cerevisiae for biophysical and biochemical studies.
    Macbeth MR; Bass BL
    Methods Enzymol; 2007; 424():319-31. PubMed ID: 17662848
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-throughput protein extraction and immunoblotting analysis in Saccharomyces cerevisiae.
    Lorenz TC; Anand VC; Payne GS
    Methods Mol Biol; 2008; 457():13-27. PubMed ID: 19066016
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Purification of Membrane Proteins Overexpressed in Saccharomyces cerevisiae.
    Haslem L; Brown M; Zhang XA; Hays JM; Hays FA
    Methods Mol Biol; 2022; 2507():143-173. PubMed ID: 35773581
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stable continuous constitutive expression of a heterologous protein in Saccharomyces cerevisiae without selection pressure.
    Ibba M; Kuhla J; Smith A; Küenzi M
    Appl Microbiol Biotechnol; 1993 Jul; 39(4-5):526-31. PubMed ID: 7763923
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Overproduction of Membrane-Associated, and Integrated, Proteins Using Saccharomyces cerevisiae.
    Haslem L; Brown M; Zhang XA; Hays JM; Hays FA
    Methods Mol Biol; 2022; 2507():111-141. PubMed ID: 35773580
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Directed evolution of G protein-coupled receptors in yeast for higher functional production in eukaryotic expression hosts.
    Schütz M; Schöppe J; Sedlák E; Hillenbrand M; Nagy-Davidescu G; Ehrenmann J; Klenk C; Egloff P; Kummer L; Plückthun A
    Sci Rep; 2016 Feb; 6():21508. PubMed ID: 26911446
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Removing proteins from an aerated yeast fermentation by pulsing carbon dioxide: replacing salting-out as a method of protein precipitation.
    Kirkland RA; Tanner RD
    Appl Biochem Biotechnol; 2005; 121-124():685-93. PubMed ID: 15920272
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantitative nature of overexpression experiments.
    Moriya H
    Mol Biol Cell; 2015 Nov; 26(22):3932-9. PubMed ID: 26543202
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Heterologous expression of G-protein-coupled receptors: comparison of expression systems from the standpoint of large-scale production and purification.
    Sarramegna V; Talmont F; Demange P; Milon A
    Cell Mol Life Sci; 2003 Aug; 60(8):1529-46. PubMed ID: 14513829
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative study of Saccharomyces cerevisiae LPS.
    Gordonova IK; Nikitina ZK; Bykov VA
    Bull Exp Biol Med; 2002 Oct; 134(4):370-3. PubMed ID: 12533762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.