These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 24423496)

  • 41. Influence of heating on the polyphenolic content and antioxidant activity of grape seed flour.
    Ross CF; Hoye C; Fernandez-Plotka VC
    J Food Sci; 2011 Aug; 76(6):C884-90. PubMed ID: 22417486
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Polyphenol- and fibre-rich dried fruits with green tea attenuate starch-derived postprandial blood glucose and insulin: a randomised, controlled, single-blind, cross-over intervention.
    Nyambe-Silavwe H; Williamson G
    Br J Nutr; 2016 Aug; 116(3):443-50. PubMed ID: 27278405
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of obesity and repeated exposure on pharmacokinetic response to grape polyphenols in humans.
    Novotny JA; Chen TY; Terekhov AI; Gebauer SK; Baer DJ; Ho L; Pasinetti GM; Ferruzzi MG
    Mol Nutr Food Res; 2017 Nov; 61(11):. PubMed ID: 28654207
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Photoprotection by Punica granatum seed oil nanoemulsion entrapping polyphenol-rich ethyl acetate fraction against UVB-induced DNA damage in human keratinocyte (HaCaT) cell line.
    Baccarin T; Mitjans M; Ramos D; Lemos-Senna E; Vinardell MP
    J Photochem Photobiol B; 2015 Dec; 153():127-36. PubMed ID: 26406978
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Insulin sensitizing actions of fenugreek seed polyphenols, quercetin & metformin in a rat model.
    Kannappan S; Anuradha CV
    Indian J Med Res; 2009 Apr; 129(4):401-8. PubMed ID: 19535835
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inhibition of alpha-glucosidase and amylase by bartogenic acid isolated from Barringtonia racemosa Roxb. seeds.
    Gowri PM; Tiwari AK; Ali AZ; Rao JM
    Phytother Res; 2007 Aug; 21(8):796-9. PubMed ID: 17533638
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Serum cholesterol reduction by feeding a high-cholesterol diet containing a lower-molecular-weight polyphenol fraction from peanut skin.
    Tamura T; Inoue N; Shimizu-Ibuka A; Tadaishi M; Takita T; Arai S; Mura K
    Biosci Biotechnol Biochem; 2012; 76(4):834-7. PubMed ID: 22484944
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anti-hyperglycemic activity of Aegle marmelos (L.) corr. is partly mediated by increased insulin secretion, α-amylase inhibition, and retardation of glucose absorption.
    Ansari P; Afroz N; Jalil S; Azad SB; Mustakim MG; Anwar S; Haque SM; Hossain SM; Tony RR; Hannan JM
    J Pediatr Endocrinol Metab; 2017 Jan; 30(1):37-47. PubMed ID: 28002030
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enzymatic hydrolysis of native granular starches by a new β-amylase from peanut (Arachis hypogaea).
    Das R; Kayastha AM
    Food Chem; 2019 Mar; 276():583-590. PubMed ID: 30409636
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Trimeric and Tetrameric A-Type Procyanidins from Peanut Skins.
    Dudek MK; Gliński VB; Davey MH; Sliva D; Kaźmierski S; Gliński JA
    J Nat Prod; 2017 Feb; 80(2):415-426. PubMed ID: 28231711
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Antioxidant-guided isolation and mass spectrometric identification of the major polyphenols in barley (Hordeum vulgare) grain.
    Gangopadhyay N; Rai DK; Brunton NP; Gallagher E; Hossain MB
    Food Chem; 2016 Nov; 210():212-20. PubMed ID: 27211640
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of hypolipidemic effects of peanut skin-derived polyphenols in rats on Western-diet.
    Bansode RR; Randolph P; Hurley S; Ahmedna M
    Food Chem; 2012 Dec; 135(3):1659-66. PubMed ID: 22953907
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro.
    Nakai M; Fukui Y; Asami S; Toyoda-Ono Y; Iwashita T; Shibata H; Mitsunaga T; Hashimoto F; Kiso Y
    J Agric Food Chem; 2005 Jun; 53(11):4593-8. PubMed ID: 15913331
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Proanthocyanidin composition in the seed coat of lentils (Lens culinaris L.).
    Dueñas M; Sun B; Hernández T; Estrella I; Spranger MI
    J Agric Food Chem; 2003 Dec; 51(27):7999-8004. PubMed ID: 14690386
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydroethanolic extract of the inner stem bark of Cedrela odorata has low toxicity and reduces hyperglycemia induced by an overload of sucrose and glucose.
    Giordani MA; Collicchio TC; Ascêncio SD; Martins DT; Balogun SO; Bieski IG; da Silva LA; Colodel EM; de Souza RL; de Souza DL; de França SA; Andrade CM; Kawashita NH
    J Ethnopharmacol; 2015 Mar; 162():352-61. PubMed ID: 25562721
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biochemical study of the anti-diabetic action of the Egyptian plants fenugreek and balanites.
    Gad MZ; El-Sawalhi MM; Ismail MF; El-Tanbouly ND
    Mol Cell Biochem; 2006 Jan; 281(1-2):173-83. PubMed ID: 16328970
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of epicatechin as one of the key bioactive constituents of polyphenol-enriched extracts that demonstrate an anti-allergic effect in a murine model of food allergy.
    Singh A; Demont A; Actis-Goretta L; Holvoet S; Lévêques A; Lepage M; Nutten S; Mercenier A
    Br J Nutr; 2014 Aug; 112(3):358-68. PubMed ID: 24854295
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A-type proanthocyanidins from lychee seeds and their antioxidant and antiviral activities.
    Xu X; Xie H; Wang Y; Wei X
    J Agric Food Chem; 2010 Nov; 58(22):11667-72. PubMed ID: 20964424
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Extraction yields and anti-oxidant activity of proanthocyanidins from different parts of grape pomace: effect of mechanical treatments.
    de Sá M; Justino V; Spranger MI; Zhao YQ; Han L; Sun BS
    Phytochem Anal; 2014; 25(2):134-40. PubMed ID: 24123351
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Extracts enriched in different polyphenolic families normalize increased cardiac NADPH oxidase expression while having differential effects on insulin resistance, hypertension, and cardiac hypertrophy in high-fructose-fed rats.
    Al-Awwadi NA; Araiz C; Bornet A; Delbosc S; Cristol JP; Linck N; Azay J; Teissedre PL; Cros G
    J Agric Food Chem; 2005 Jan; 53(1):151-7. PubMed ID: 15631522
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.