BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 24423650)

  • 1. Slow pyrolysis of rice straw: analysis of products properties, carbon and energy yields.
    Park J; Lee Y; Ryu C; Park YK
    Bioresour Technol; 2014 Mar; 155():63-70. PubMed ID: 24423650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C.
    Lee Y; Park J; Ryu C; Gang KS; Yang W; Park YK; Jung J; Hyun S
    Bioresour Technol; 2013 Nov; 148():196-201. PubMed ID: 24047681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Value addition to rice straw through pyrolysis in hydrogen and nitrogen environments.
    Balagurumurthy B; Srivastava V; Vinit ; Kumar J; Biswas B; Singh R; Gupta P; Kumar KL; Singh R; Bhaskar T
    Bioresour Technol; 2015; 188():273-9. PubMed ID: 25637279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of pyrolysis temperature and heating time on biochar obtained from the pyrolysis of straw and lignosulfonate.
    Zhang J; Liu J; Liu R
    Bioresour Technol; 2015 Jan; 176():288-91. PubMed ID: 25435066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of pyrolytic products produced from inorganic-rich and demineralized rice straw (Oryza sativa L.) by fluidized bed pyrolyzer for future biorefinery approach.
    Eom IY; Kim JY; Lee SM; Cho TS; Yeo H; Choi JW
    Bioresour Technol; 2013 Jan; 128():664-72. PubMed ID: 23220113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing biochar yield by co-pyrolysis of bio-oil with biomass: impacts of potassium hydroxide addition and air pretreatment prior to co-pyrolysis.
    Veksha A; Zaman W; Layzell DB; Hill JM
    Bioresour Technol; 2014 Nov; 171():88-94. PubMed ID: 25189513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast pyrolysis of microalgae remnants in a fluidized bed reactor for bio-oil and biochar production.
    Wang K; Brown RC; Homsy S; Martinez L; Sidhu SS
    Bioresour Technol; 2013 Jan; 127():494-9. PubMed ID: 23069615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1.
    Lee Y; Eum PR; Ryu C; Park YK; Jung JH; Hyun S
    Bioresour Technol; 2013 Feb; 130():345-50. PubMed ID: 23313679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars.
    Claoston N; Samsuri AW; Ahmad Husni MH; Mohd Amran MS
    Waste Manag Res; 2014 Apr; 32(4):331-9. PubMed ID: 24643171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the quality of bio-oil and selectivity of phenols compounds from pyrolysis of anaerobic digested rice straw.
    Liang J; Lin Y; Wu S; Liu C; Lei M; Zeng C
    Bioresour Technol; 2015 Apr; 181():220-3. PubMed ID: 25647031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: Product yields and its characterization.
    Tinwala F; Mohanty P; Parmar S; Patel A; Pant KK
    Bioresour Technol; 2015; 188():258-64. PubMed ID: 25770670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on co-pyrolysis characteristics of rice straw and Shenfu bituminous coal blends in a fixed bed reactor.
    Li S; Chen X; Liu A; Wang L; Yu G
    Bioresour Technol; 2014 Mar; 155():252-7. PubMed ID: 24457309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge.
    Wei S; Zhu M; Fan X; Song J; Peng P; Li K; Jia W; Song H
    Chemosphere; 2019 Mar; 218():624-631. PubMed ID: 30502701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate.
    Gai X; Wang H; Liu J; Zhai L; Liu S; Ren T; Liu H
    PLoS One; 2014; 9(12):e113888. PubMed ID: 25469875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products.
    Jeong CY; Dodla SK; Wang JJ
    Chemosphere; 2016 Jan; 142():4-13. PubMed ID: 26058554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of torrefaction on the properties of rice straw high temperature pyrolysis char: Pore structure, aromaticity and gasification activity.
    Chen H; Chen X; Qin Y; Wei J; Liu H
    Bioresour Technol; 2017 Mar; 228():241-249. PubMed ID: 28068592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of a glass wool hot vapour filter on yields and properties of bio-oil derived from rapid pyrolysis of paddy residues.
    Pattiya A; Suttibak S
    Bioresour Technol; 2012 Jul; 116():107-13. PubMed ID: 22609663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery and electrochemical performance in lithium secondary batteries of biochar derived from rice straw.
    Ryu DJ; Oh RG; Seo YD; Oh SY; Ryu KS
    Environ Sci Pollut Res Int; 2015 Jul; 22(14):10405-12. PubMed ID: 25821037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and Characterization of MgO-Modified Rice Straw Biochars.
    Qin X; Luo J; Liu Z; Fu Y
    Molecules; 2020 Dec; 25(23):. PubMed ID: 33291812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil.
    Wu M; Feng Q; Sun X; Wang H; Gielen G; Wu W
    Sci Rep; 2015 May; 5():10001. PubMed ID: 25944542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.