These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 2442384)

  • 1. Axonal transport of receptors: characterization, role in receptor regulation and possible involvement in learning.
    Laduron PM
    J Recept Res; 1987; 7(1-4):417-34. PubMed ID: 2442384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Axonal transport of neuroreceptors: possible involvement in long-term memory.
    Laduron PM
    Neuroscience; 1987 Sep; 22(3):767-79. PubMed ID: 2446198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gliding movement of and bidirectional transport along single native microtubules from squid axoplasm: evidence for an active role of microtubules in cytoplasmic transport.
    Allen RD; Weiss DG; Hayden JH; Brown DT; Fujiwake H; Simpson M
    J Cell Biol; 1985 May; 100(5):1736-52. PubMed ID: 2580845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axoplasmic transport in the crayfish nerve cord. The role of fibrillar constituents of neurons.
    Fernandez HL; Burton PR; Samson FE
    J Cell Biol; 1971 Oct; 51(1):176-92. PubMed ID: 4106857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of the amount of neurotensin retrogradely transported in dopaminergic neurons of senescent rats.
    Castel MN; Lechardeur D; Blanchard JC; Laduron PM
    Neurosci Lett; 1991 Mar; 124(1):111-4. PubMed ID: 1713313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microtubules and the capacity of the system for rapid axonal transport.
    Brimijoin S
    Fed Proc; 1982 May; 41(7):2312-6. PubMed ID: 6176473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axonal transport and distribution of immunologically distinct kinesin heavy chains in rat neurons.
    Li JY; Pfister KK; Brady S; Dahlström A
    J Neurosci Res; 1999 Oct; 58(2):226-41. PubMed ID: 10502279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast axonal transport in the presence of high Ca2+: evidence that microtubules are not required.
    Brady ST; Crothers SD; Nosal C; McClure WO
    Proc Natl Acad Sci U S A; 1980 Oct; 77(10):5909-13. PubMed ID: 6160585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ernst Klenk Lecture, November 1987. Molecular studies in neuroscience: implications for medicine.
    Bloom FE
    Biol Chem Hoppe Seyler; 1991 Apr; 372(4):245-54. PubMed ID: 1676270
    [No Abstract]   [Full Text] [Related]  

  • 10. Building a Terminal: Mechanisms of Presynaptic Development in the CNS.
    Bury LA; Sabo SL
    Neuroscientist; 2016 Aug; 22(4):372-91. PubMed ID: 26208860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slow axoplasmic transport: a fiction?
    Alvarez J; Torres JC
    J Theor Biol; 1985 Feb; 112(3):627-51. PubMed ID: 2580191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Possible role of intramembrane receptor-receptor interactions in memory and learning via formation of long-lived heteromeric complexes: focus on motor learning in the basal ganglia.
    Agnati LF; Franzen O; Ferré S; Leo G; Franco R; Fuxe K
    J Neural Transm Suppl; 2003; (65):1-28. PubMed ID: 12946046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retrograde axonal transport of target tissue-derived macromolecules.
    Hendry IA; Hill CE
    Nature; 1980 Oct; 287(5783):647-9. PubMed ID: 6159541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid axoplasmic transport in the olfactory nerve of the pike: II. Analysis of transported proteins by SDS gel electrophoresis.
    Weiss DG; Krygier-Brévart V; Gross GW; Kreutzberg GW
    Brain Res; 1978 Jan; 139(1):77-87. PubMed ID: 74276
    [No Abstract]   [Full Text] [Related]  

  • 15. Sexual divergence in microtubule function: the novel intranasal microtubule targeting SKIP normalizes axonal transport and enhances memory.
    Amram N; Hacohen-Kleiman G; Sragovich S; Malishkevich A; Katz J; Touloumi O; Lagoudaki R; Grigoriadis NC; Giladi E; Yeheskel A; Pasmanik-Chor M; Jouroukhin Y; Gozes I
    Mol Psychiatry; 2016 Oct; 21(10):1467-76. PubMed ID: 26782054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axonal transport of a subclass of tau proteins: evidence for the regional differentiation of microtubules in neurons.
    Tytell M; Brady ST; Lasek RJ
    Proc Natl Acad Sci U S A; 1984 Mar; 81(5):1570-4. PubMed ID: 6200879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Presynaptic heteroreceptors in regulation of neuronal transmission.
    Laduron PM
    Biochem Pharmacol; 1985 Feb; 34(4):467-70. PubMed ID: 2578794
    [No Abstract]   [Full Text] [Related]  

  • 18. Comparison of active transport in neuronal axons and dendrites.
    Kuznetsov AV
    Math Biosci; 2010 Dec; 228(2):195-202. PubMed ID: 20955717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid axoplasmic transport of free leucine.
    Schmid G; Wagner L; Weiss DG
    J Neurobiol; 1983 Mar; 14(2):133-44. PubMed ID: 6188802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axoplasmic streaming and proteins in th retino-tectal neurons of the pigeon.
    Schonbach J; Cuénod M
    Acta Neuropathol; 1971; 5():Suppl 5:153-61. PubMed ID: 4104920
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.