BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 24424082)

  • 1. Constant diurnal temperature regime alters the impact of simulated climate warming on a tropical pseudoscorpion.
    Zeh JA; Bonilla MM; Su EJ; Padua MV; Anderson RV; Zeh DW
    Sci Rep; 2014 Jan; 4():3706. PubMed ID: 24424082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of warming with temperature oscillations on a low-latitude aphid, Aphis craccivora.
    Chen CY; Chiu MC; Kuo MH
    Bull Entomol Res; 2013 Aug; 103(4):406-13. PubMed ID: 23448233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Night warming on hot days produces novel impacts on development, survival and reproduction in a small arthropod.
    Zhao F; Zhang W; Hoffmann AA; Ma CS
    J Anim Ecol; 2014 Jul; 83(4):769-78. PubMed ID: 24372332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature variation makes ectotherms more sensitive to climate change.
    Paaijmans KP; Heinig RL; Seliga RA; Blanford JI; Blanford S; Murdock CC; Thomas MB
    Glob Chang Biol; 2013 Aug; 19(8):2373-80. PubMed ID: 23630036
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Live Fast, Die Young: Experimental Evidence of Population Extinction Risk due to Climate Change.
    Bestion E; Teyssier A; Richard M; Clobert J; Cote J
    PLoS Biol; 2015 Oct; 13(10):e1002281. PubMed ID: 26501958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulated climate warming and mitochondrial haplogroup modulate testicular small non-coding RNA expression in the neotropical pseudoscorpion,
    Su-Keene EJ; Bonilla MM; Padua MV; Zeh DW; Zeh JA
    Environ Epigenet; 2018 Oct; 4(4):dvy027. PubMed ID: 30595847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity to thermal extremes in Australian Drosophila implies similar impacts of climate change on the distribution of widespread and tropical species.
    Overgaard J; Kearney MR; Hoffmann AA
    Glob Chang Biol; 2014 Jun; 20(6):1738-50. PubMed ID: 24549716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extinction risks forced by climatic change and intraspecific variation in the thermal physiology of a tropical lizard.
    Pontes-da-Silva E; Magnusson WE; Sinervo B; Caetano GH; Miles DB; Colli GR; Diele-Viegas LM; Fenker J; Santos JC; Werneck FP
    J Therm Biol; 2018 Apr; 73():50-60. PubMed ID: 29549991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global warming-induced temperature effects to intertidal tropical and temperate meiobenthic communities.
    Vafeiadou AM; Bretaña BLP; Van Colen C; Dos Santos GAP; Moens T
    Mar Environ Res; 2018 Nov; 142():163-177. PubMed ID: 30348474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fitness under high temperatures is overestimated when daily thermal fluctuation is ignored.
    Bagni T; Siaussat D; Maria A; Fuentes A; Couzi P; Massot M
    J Therm Biol; 2024 Jan; 119():103806. PubMed ID: 38335848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Positive genetic covariance and limited thermal tolerance constrain tropical insect responses to global warming.
    García-Robledo C; Baer CS
    J Evol Biol; 2021 Sep; 34(9):1432-1446. PubMed ID: 34265126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of Spodoptera litura (Lepidoptera: Noctuidae) in responses to different amplitudes of alternating temperatures across permissive warm temperature regimes.
    Zhong T; Gong L; Pan Y; Li J; Lu A; Liu L; Wu H; Zhao Z; Wang L
    J Econ Entomol; 2024 Jun; 117(3):1041-1046. PubMed ID: 38482558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of constant and fluctuating incubation temperatures on hatching success and hatchling traits in the diamondback terrapin (Malaclemys terrapin) in the context of the warming climate.
    Rowe CL; Liang D; Woodland RJ
    J Therm Biol; 2020 Feb; 88():102528. PubMed ID: 32126003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Vulnerability of Tropical Ectotherms to Warming Is Modulated by the Microclimatic Heterogeneity.
    Pincebourde S; Suppo C
    Integr Comp Biol; 2016 Jul; 56(1):85-97. PubMed ID: 27371561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The costs of living in a thermal fluctuating environment for the tropical haematophagous bug, Rhodnius prolixus.
    Rolandi C; Schilman PE
    J Therm Biol; 2018 May; 74():92-99. PubMed ID: 29801656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are extreme high temperatures at low or high latitudes more likely to inhibit the population growth of a globally distributed aphid?
    Ma G; Hoffmann AA; Ma CS
    J Therm Biol; 2021 May; 98():102936. PubMed ID: 34016358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field and laboratory studies reveal interacting effects of stream oxygenation and warming on aquatic ectotherms.
    Verberk WC; Durance I; Vaughan IP; Ormerod SJ
    Glob Chang Biol; 2016 May; 22(5):1769-78. PubMed ID: 26924811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global metabolic impacts of recent climate warming.
    Dillon ME; Wang G; Huey RB
    Nature; 2010 Oct; 467(7316):704-6. PubMed ID: 20930843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal performance under constant temperatures can accurately predict insect development times across naturally variable microclimates.
    von Schmalensee L; Hulda Gunnarsdóttir K; Näslund J; Gotthard K; Lehmann P
    Ecol Lett; 2021 Aug; 24(8):1633-1645. PubMed ID: 34036719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Under the weather?-The direct effects of climate warming on a threatened desert lizard are mediated by their activity phase and burrow system.
    Moore D; Stow A; Kearney MR
    J Anim Ecol; 2018 May; 87(3):660-671. PubMed ID: 29446081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.