These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 24424278)

  • 41. The mechanism of solvent effect on the positional selectivity of Candida antarctica lipase B during 1,3-diolein synthesis by esterification.
    Duan ZQ; Du W; Liu DH
    Bioresour Technol; 2011 Dec; 102(23):11048-50. PubMed ID: 21978621
    [TBL] [Abstract][Full Text] [Related]  

  • 42. How a protein can remain stable in a solvent with high content of urea: insights from molecular dynamics simulation of Candida antarctica lipase B in urea : choline chloride deep eutectic solvent.
    Monhemi H; Housaindokht MR; Moosavi-Movahedi AA; Bozorgmehr MR
    Phys Chem Chem Phys; 2014 Jul; 16(28):14882-93. PubMed ID: 24930496
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Two-step method of enzymatic synthesis of starch laurate in ionic liquids.
    Lu X; Luo Z; Fu X; Xiao Z
    J Agric Food Chem; 2013 Oct; 61(41):9882-91. PubMed ID: 24099559
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High activity preparations of lipases and proteases for catalysis in low water containing organic solvents and ionic liquids.
    Roy I; Mukherjee J; Gupta MN
    Methods Mol Biol; 2013; 1051():275-84. PubMed ID: 23934811
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unraveling the effects of amino acid substitutions enhancing lipase resistance to an ionic liquid: a molecular dynamics study.
    Zhao J; Frauenkron-Machedjou VJ; Fulton A; Zhu L; Davari MD; Jaeger KE; Schwaneberg U; Bocola M
    Phys Chem Chem Phys; 2018 Apr; 20(14):9600-9609. PubMed ID: 29578220
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Poly(ethylene glycol)-lipase complexes that are highly active and enantioselective in ionic liquids.
    Maruyama T; Yamamura H; Kotani T; Kamiya N; Goto M
    Org Biomol Chem; 2004 Apr; 2(8):1239-44. PubMed ID: 15064803
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Immobilised lipase on structured supports containing covalently attached ionic liquids for the continuous synthesis of biodiesel in scCO2.
    Lozano P; García-Verdugo E; Bernal JM; Izquierdo DF; Burguete MI; Sánchez-Gómez G; Luis SV
    ChemSusChem; 2012 Apr; 5(4):790-8. PubMed ID: 22383391
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Self-Assembly Nanostructures of Triglyceride-Water Interfaces Determine Functional Conformations of Candida antarctica Lipase B.
    Benson SP; Pleiss J
    Langmuir; 2017 Mar; 33(12):3151-3159. PubMed ID: 28274117
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimization of lipase-catalyzed glucose ester synthesis in ionic liquids.
    Ha SH; Hiep NM; Lee SH; Koo YM
    Bioprocess Biosyst Eng; 2010 Jan; 33(1):63-70. PubMed ID: 19680693
    [TBL] [Abstract][Full Text] [Related]  

  • 50. On the influence of hydrated imidazolium-based ionic liquid on protein structure stability: a molecular dynamics simulation study.
    Shao Q
    J Chem Phys; 2013 Sep; 139(11):115102. PubMed ID: 24070310
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Computational approach for designing thermostable Candida antarctica lipase B by molecular dynamics simulation.
    Park HJ; Park K; Kim YH; Yoo YJ
    J Biotechnol; 2014 Dec; 192 Pt A():66-70. PubMed ID: 25270022
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Designing a novel signal sequence for efficient secretion of Candida antarctica lipase B in E. coli: The molecular dynamic simulation, codon optimization and statistical analysis approach.
    Ghahremanifard P; Rezaeinezhad N; Rigi G; Ramezani F; Ahmadian G
    Int J Biol Macromol; 2018 Nov; 119():291-305. PubMed ID: 30055273
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lipase-catalyzed synthesis of starch palmitate in mixed ionic liquids.
    Lu X; Luo Z; Yu S; Fu X
    J Agric Food Chem; 2012 Sep; 60(36):9273-9. PubMed ID: 22920292
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biodiesel synthesis and conformation of lipase from Burkholderia cepacia in room temperature ionic liquids and organic solvents.
    Liu Y; Chen D; Yan Y; Peng C; Xu L
    Bioresour Technol; 2011 Nov; 102(22):10414-8. PubMed ID: 21955878
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mediating electrostatic binding of 1-butyl-3-methylimidazolium chloride to enzyme surfaces improves conformational stability.
    Nordwald EM; Kaar JL
    J Phys Chem B; 2013 Aug; 117(30):8977-86. PubMed ID: 23822219
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enzymatic Transesterification of Kraft Lignin with Long Acyl Chains in Ionic Liquids.
    Hulin L; Husson E; Bonnet JP; Stevanovic T; Sarazin C
    Molecules; 2015 Sep; 20(9):16334-53. PubMed ID: 26370956
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Do they make a good match? Molecular dynamics studies on CALB-catalyzed esterification of 3-phenylpropionic and cinnamic acids.
    Zieniuk B; Stępniewski TM; Fabiszewska A
    Arch Biochem Biophys; 2023 Dec; 750():109807. PubMed ID: 37923242
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Water-in-ionic liquid microemulsion-based organogels as novel matrices for enzyme immobilization.
    Pavlidis IV; Tzafestas K; Stamatis H
    Biotechnol J; 2010 Aug; 5(8):805-12. PubMed ID: 20449844
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Significant changes in the transesterification activity of free and mesoporous-immobilized Rhizopus oryzae lipase in ionic liquids.
    Shakeri M; Kawakami K
    J Biotechnol; 2010 Feb; 145(3):281-3. PubMed ID: 19948194
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enzyme microheterogeneous hydration and stabilization in supercritical carbon dioxide.
    Silveira RL; Martínez J; Skaf MS; Martínez L
    J Phys Chem B; 2012 May; 116(19):5671-8. PubMed ID: 22497454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.