These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24424587)

  • 1. A study of the transpiration surfaces of Avena sterilis L. var. Algerian leaves using monosilicic acid as a tracer for water movement.
    Aston MJ; Jones MM
    Planta; 1976 Jan; 130(2):121-9. PubMed ID: 24424587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Ectodesmata and the peristomatal transpiration].
    Franke W
    Planta; 1967 Jun; 73(2):138-54. PubMed ID: 24554403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tansley Review No. 22 What becomes of the transpiration stream?
    Canny MJ
    New Phytol; 1990 Mar; 114(3):341-368. PubMed ID: 33873972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the Resistance to Transpiration of the Sites of Evaporation within the Leaf.
    Farquhar GD; Raschke K
    Plant Physiol; 1978 Jun; 61(6):1000-5. PubMed ID: 16660404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Residual transpiration as a component of salinity stress tolerance mechanism: a case study for barley.
    Hasanuzzaman M; Davies NW; Shabala L; Zhou M; Brodribb TJ; Shabala S
    BMC Plant Biol; 2017 Jun; 17(1):107. PubMed ID: 28629324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the mesophyll cell wall in leaf transpiration.
    Jarvis PG; Slatyer RO
    Planta; 1970 Dec; 90(4):303-22. PubMed ID: 24499942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell water potential, osmotic potential, and turgor in the epidermis and mesophyll of transpiring leaves : Combined measurements with the cell pressure probe and nanoliter osmometer.
    Nonami H; Schulze ED
    Planta; 1989 Jan; 177(1):35-46. PubMed ID: 24212270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of stomatal movement in response to air humidity, irradiance and xylem water potential.
    Nonami H; Schulze ED; Ziegler H
    Planta; 1991 Dec; 183(1):57-64. PubMed ID: 24193533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The competition between liquid and vapor transport in transpiring leaves.
    Rockwell FE; Holbrook NM; Stroock AD
    Plant Physiol; 2014 Apr; 164(4):1741-58. PubMed ID: 24572172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cuticular wax coverage and its transpiration barrier properties in Quercus coccifera L. leaves: does the environment matter?
    Bueno A; Sancho-Knapik D; Gil-Pelegrín E; Leide J; Peguero-Pina JJ; Burghardt M; Riederer M
    Tree Physiol; 2020 Jun; 40(7):827-840. PubMed ID: 31728539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecophysiological relevance of cuticular transpiration of deciduous and evergreen plants in relation to stomatal closure and leaf water potential.
    Burghardt M; Riederer M
    J Exp Bot; 2003 Aug; 54(389):1941-9. PubMed ID: 12815029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier.
    Zeisler V; Schreiber L
    Planta; 2016 Jan; 243(1):65-81. PubMed ID: 26341347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A possible evaporation site in the guard cell wall and the influence of leaf structure on the humidity response by stomata of woody plants.
    Appleby RF; Davies WJ
    Oecologia; 1983 Jan; 56(1):30-40. PubMed ID: 28310766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leaf Cuticular Transpiration Barrier Organization in Tea Tree Under Normal Growth Conditions.
    Chen M; Zhang Y; Kong X; Du Z; Zhou H; Yu Z; Qin J; Chen C
    Front Plant Sci; 2021; 12():655799. PubMed ID: 34276719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sites of entry of water into the symplast of maize roots.
    Varney GT; McCully ME; Canny MJ
    New Phytol; 1993 Dec; 125(4):733-741. PubMed ID: 33874454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guard cell wall: immunocytochemical detection of polysaccharide components.
    Majewska-Sawka A; Münster A; Rodríguez-García MI
    J Exp Bot; 2002 May; 53(371):1067-79. PubMed ID: 11971918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new technique for measurement of water permeability of stomatous cuticular membranes isolated from Hedera helix leaves.
    Santrůcek J; Simánová E; Karbulková J; Simková M; Schreiber L
    J Exp Bot; 2004 Jun; 55(401):1411-22. PubMed ID: 15155780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity of the Cuticular Transpiration Barrier in Response to Water Shortage and Resupply in
    Zhang Y; Du Z; Han Y; Chen X; Kong X; Sun W; Chen C; Chen M
    Front Plant Sci; 2020; 11():600069. PubMed ID: 33505410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo manipulation of cuticular water permeance and its effect on stomatal response to air humidity.
    Kerstiens G
    New Phytol; 1997 Nov; 137(3):473-480. PubMed ID: 33863080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cuticular wax coverage and its transpiration barrier properties in Quercus coccifera L. leaves: does the environment matter?
    Bueno A; Sancho-Knapik D; Gil-Pelegrín E; Leide J; Peguero-Pina JJ; Burghardt M; Riederer M
    Tree Physiol; 2019 Nov; ():. PubMed ID: 31781752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.