These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 24424763)

  • 1. Cyanide formation in preparations from Chlorella vulgaris Beijerinck: Effect of sonication and amygdalin addition.
    Gewitz HS; Pistorius EK; Voss H; Vennesland B
    Planta; 1976 Jan; 131(2):145-8. PubMed ID: 24424763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyanide formation in preparations from Chlorella and New Zealand spinach leaves: Effect of added amino acids.
    Gewitz HS; Pistorius EK; Voss H; Vennesland B
    Planta; 1976 Jan; 131(2):149-53. PubMed ID: 24424764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible inactivation of nitrate reductase in Chlorella vulgaris in vivo.
    Pistorius EK; Gewitz HS; Voss H; Vennesland B
    Planta; 1976 Jan; 128(1):73-80. PubMed ID: 24430609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A D-amino acid oxidase from Chlorella vulgaris.
    Pistorius EK; Voss H
    Biochim Biophys Acta; 1977 Apr; 481(2):395-406. PubMed ID: 15607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanide formation from histidine in Chlorella. A general reaction of aromatic amino acids catalyzed by amino acid oxidase systems.
    Pistorius EK; Gewitz HS; Voss H; Vennesland B
    Biochim Biophys Acta; 1977 Apr; 481(2):384-91. PubMed ID: 15606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of vanadium on nitrate reductase of Chlorella vulgaris.
    Ramadoss CS
    Planta; 1979 Oct; 146(5):539-44. PubMed ID: 24318324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species.
    Pičmanová M; Neilson EH; Motawia MS; Olsen CE; Agerbirk N; Gray CJ; Flitsch S; Meier S; Silvestro D; Jørgensen K; Sánchez-Pérez R; Møller BL; Bjarnholt N
    Biochem J; 2015 Aug; 469(3):375-89. PubMed ID: 26205491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of amygdalin and prunasin in Prunus serotina Ehrh. using (1) H-NMR spectroscopy.
    Santos Pimenta LP; Schilthuizen M; Verpoorte R; Choi YH
    Phytochem Anal; 2014; 25(2):122-6. PubMed ID: 24115144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of the Gut microbiota on Amygdalin and its use as an anti-cancer therapy: Substantial review on the key components involved in altering dose efficacy and toxicity.
    Jaswal V; Palanivelu J; C R
    Biochem Biophys Rep; 2018 Jul; 14():125-132. PubMed ID: 29872744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrate reductase of Chlorella fusca: Partial purification, cytochrome content and presence of HCN after in vivo inactivation.
    Gewitz HS; Piefke J; Vennesland B
    Planta; 1978 Jan; 141(3):323-8. PubMed ID: 24414880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ammonium and ferricyanide on nitrate utilization by Chlorella vulgaris.
    Pistorius EK; Funkhouser EA; Voss H
    Planta; 1978 Jan; 141(3):279-82. PubMed ID: 24414873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosynthesis of cyanogenic glycosides.
    Conn EE
    Naturwissenschaften; 1979 Jan; 66(1):28-34. PubMed ID: 423994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioaccessibility of phenolic compounds, lutein, and bioelements of preparations containing
    Muszyńska B; Krakowska A; Lazur J; Jękot B; Zimmer Ł; Szewczyk A; Sułkowska-Ziaja K; Poleszak E; Opoka W
    J Appl Phycol; 2018; 30(3):1629-1640. PubMed ID: 29899597
    [No Abstract]   [Full Text] [Related]  

  • 14. Factors that determine rates of cyanogenesis in bovine ruminal fluid in vitro.
    Majak W; McDiarmid RE; Hall JW; Cheng KJ
    J Anim Sci; 1990 Jun; 68(6):1648-55. PubMed ID: 2166729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The formation of hydrogen cyanide from histidine in the presence of amino acid oxidase and peroxidase.
    Gewitz HS; Piefke J; Langowska K; Vennesland B
    Biochim Biophys Acta; 1980 Jan; 611(1):11-26. PubMed ID: 7350910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of Apricot Cyanogenic Glycosides to Thiocyanate by Liver and Colon Enzymes.
    Lee J; Kwon H
    Toxicol Res; 2009 Mar; 25(1):23-28. PubMed ID: 32038815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of
    Vildanova GI; Allaguvatova RZ; Kunsbaeva DF; Sukhanova NV; Gaysina LA
    BioTech (Basel); 2023 May; 12(2):. PubMed ID: 37218759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant tissue analysis as a tool for predicting fertiliser needs for low cyanogenic glucoside levels in cassava roots: An assessment of its possible use.
    Imakumbili MLE; Semu E; Semoka JMR; Abass A; Mkamilo G
    PLoS One; 2020; 15(2):e0228641. PubMed ID: 32053630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of functional spreadable processed cheese using Chlorella vulgaris.
    Tohamy MM; Ali MA; Shaaban HA; Mohamad AG; Hasanain AM
    Acta Sci Pol Technol Aliment; 2018; 17(4):347-358. PubMed ID: 30558391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amygdalin: A Review on Its Characteristics, Antioxidant Potential, Gastrointestinal Microbiota Intervention, Anticancer Therapeutic and Mechanisms, Toxicity, and Encapsulation.
    Barakat H; Aljutaily T; Almujaydil MS; Algheshairy RM; Alhomaid RM; Almutairi AS; Alshimali SI; Abdellatif AAH
    Biomolecules; 2022 Oct; 12(10):. PubMed ID: 36291723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.