These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 24424764)

  • 1. Cyanide formation in preparations from Chlorella and New Zealand spinach leaves: Effect of added amino acids.
    Gewitz HS; Pistorius EK; Voss H; Vennesland B
    Planta; 1976 Jan; 131(2):149-53. PubMed ID: 24424764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyanide formation in preparations from Chlorella vulgaris Beijerinck: Effect of sonication and amygdalin addition.
    Gewitz HS; Pistorius EK; Voss H; Vennesland B
    Planta; 1976 Jan; 131(2):145-8. PubMed ID: 24424763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyanide formation from histidine in Chlorella. A general reaction of aromatic amino acids catalyzed by amino acid oxidase systems.
    Pistorius EK; Gewitz HS; Voss H; Vennesland B
    Biochim Biophys Acta; 1977 Apr; 481(2):384-91. PubMed ID: 15606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A D-amino acid oxidase from Chlorella vulgaris.
    Pistorius EK; Voss H
    Biochim Biophys Acta; 1977 Apr; 481(2):395-406. PubMed ID: 15607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The formation of hydrogen cyanide from histidine in the presence of amino acid oxidase and peroxidase.
    Gewitz HS; Piefke J; Langowska K; Vennesland B
    Biochim Biophys Acta; 1980 Jan; 611(1):11-26. PubMed ID: 7350910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dark respiration of Anacystis nidulans. Production of HCN from histidine and oxidation of basic amino acids.
    Pistorius EK; Jetschmann K; Voss H; Vennesland B
    Biochim Biophys Acta; 1979 Jul; 585(4):630-42. PubMed ID: 223652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of vanadium on nitrate reductase of Chlorella vulgaris.
    Ramadoss CS
    Planta; 1979 Oct; 146(5):539-44. PubMed ID: 24318324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotoxicity of mercury to Chlorella vulgaris as influenced by amino acids.
    Mohapatra DK; Mohanty L; Mohanty RC; Mohapatra PK
    Acta Biol Hung; 1997; 48(4):497-504. PubMed ID: 9847462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of ammonium and ferricyanide on nitrate utilization by Chlorella vulgaris.
    Pistorius EK; Funkhouser EA; Voss H
    Planta; 1978 Jan; 141(3):279-82. PubMed ID: 24414873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible inactivation of nitrate reductase in Chlorella vulgaris in vivo.
    Pistorius EK; Gewitz HS; Voss H; Vennesland B
    Planta; 1976 Jan; 128(1):73-80. PubMed ID: 24430609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrate reductase of Chlorella fusca: Partial purification, cytochrome content and presence of HCN after in vivo inactivation.
    Gewitz HS; Piefke J; Vennesland B
    Planta; 1978 Jan; 141(3):323-8. PubMed ID: 24414880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Biostimulator
    Kim MJ; Shim CK; Kim YK; Ko BG; Park JH; Hwang SG; Kim BH
    Plant Pathol J; 2018 Dec; 34(6):567-574. PubMed ID: 30588229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of cyanide and some other carbonyl binding reagents on glycolate excretion by Chlorella vulgaris.
    Vennesland B; Jetschmann K
    Planta; 1976 Jan; 128(1):81-4. PubMed ID: 24430610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioaccessibility of phenolic compounds, lutein, and bioelements of preparations containing
    Muszyńska B; Krakowska A; Lazur J; Jękot B; Zimmer Ł; Szewczyk A; Sułkowska-Ziaja K; Poleszak E; Opoka W
    J Appl Phycol; 2018; 30(3):1629-1640. PubMed ID: 29899597
    [No Abstract]   [Full Text] [Related]  

  • 15. On the abiotic formation of amino acids. I. HCN as a precursor of amino acids detected in extracts of lunar samples. II. Formation of HCN and amino acids from simulated mixtures of gases released from lunar samples.
    Yuasa S; Flory D; Basile B; Oró J
    J Mol Evol; 1984; 20(1):52-8. PubMed ID: 6330374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amino acids in cell wall of Gram-positive bacterium Micrococcus sp. hsn08 with flocculation activity on Chlorella vulgaris biomass.
    Li Y; Xu Y; Zheng T; Wang H
    Bioresour Technol; 2018 Feb; 249():417-424. PubMed ID: 29065323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model based analysis of transient fluorescence yield induced by actinic laser flashes in spinach leaves and cells of green alga Chlorella pyrenoidosa Chick.
    Belyaeva NE; Schmitt FJ; Paschenko VZ; Riznichenko GY; Rubin AB; Renger G
    Plant Physiol Biochem; 2014 Apr; 77():49-59. PubMed ID: 24556534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presence of HCN in chlorella vulgaris and its possible role in controlling the reduction of nitrate.
    Gewitz HS; Lorimer GH; Solomonson LP; Vennesland B
    Nature; 1974 May; 249(452):79-81. PubMed ID: 4364357
    [No Abstract]   [Full Text] [Related]  

  • 19. Azotobacter vinelandii nitrogenases with substitutions in the FeMo-cofactor environment of the MoFe protein: effects of acetylene or ethylene on interactions with H+, HCN, and CN-.
    Fisher K; Dilworth MJ; Kim CH; Newton WE
    Biochemistry; 2000 Sep; 39(35):10855-65. PubMed ID: 10978172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of functional spreadable processed cheese using Chlorella vulgaris.
    Tohamy MM; Ali MA; Shaaban HA; Mohamad AG; Hasanain AM
    Acta Sci Pol Technol Aliment; 2018; 17(4):347-358. PubMed ID: 30558391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.