BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 24424911)

  • 1. The effect of certain phenolic acids on the growth and ethylene production of cress seedling roots.
    Robert ML; Taylor HF; Wain RL
    Planta; 1976 Jan; 132(1):95-6. PubMed ID: 24424911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of 3,5-diiodo-4-hydroxybenzoic acid on the oxidation of IAA and auxin-induced ethylene production by cress root segments.
    Robert ML; Taylor HF; Wain RL
    Planta; 1976 Jan; 129(1):53-7. PubMed ID: 24430815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethylene production by cress roots and excised cress root segments and its inhibition by 3,5-diiodo-4-hydroxybenzoic acid.
    Robert ML; Taylor HF; Wain RL
    Planta; 1975 Jan; 126(3):273-84. PubMed ID: 24430221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promotion of cress root elongation in white light by 3,5-diiodo-4-hydroxybenzoic acid.
    Larqué-Saavedra A; Wilkins H; Wain RL
    Planta; 1975 Jan; 126(3):269-72. PubMed ID: 24430220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pectic disaccharides lepidimoic acid and β-d-xylopyranosyl-(1→3)-d-galacturonic acid occur in cress-seed exudate but lack allelochemical activity.
    Iqbal A; Miller JG; Murray L; Sadler IH; Fry SC
    Ann Bot; 2016 Apr; 117(4):607-23. PubMed ID: 26957370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for allelopathy by tree-of-heaven (Ailanthus altissima).
    Heisey RM
    J Chem Ecol; 1990 Jun; 16(6):2039-55. PubMed ID: 24264005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rod-shaped accumulations in cisternae of the endoplasmic reticulum in root cells of Lepidium sativum seedlings.
    Iversen TH; Flood PR
    Planta; 1969 Sep; 86(3):295-8. PubMed ID: 24515828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rice seedlings release momilactone B into the environment.
    Kato-Noguchi H; Ino T
    Phytochemistry; 2003 Jul; 63(5):551-4. PubMed ID: 12809715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elimination of Geotropic Responsiveness in Roots of Cress (Lepidium sativum) by Removal of Statolith Starch.
    Iversen TH
    Physiol Plant; 1969; 22(6):1251-62. PubMed ID: 20925675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and identification of a potent allelopathic substance in rice root exudates.
    Kato-Noguchi H; Ino T; Sata N; Yamamura S
    Physiol Plant; 2002 Jul; 115(3):401-405. PubMed ID: 12081533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of p-hydroxybenzoic acid and phloroglucinol on mitochondria function and root growth in cotton (Gossypium hirsutum L.) seedling roots.].
    Zhang GW; Yang CQ; Liu RX; Ni WC
    Ying Yong Sheng Tai Xue Bao; 2018 Jan; 29(1):231-237. PubMed ID: 29692032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potassium, not lepidimoide, is the principal 'allelochemical' of cress-seed exudate that promotes amaranth hypocotyl elongation.
    Fry SC
    Ann Bot; 2017 Oct; 120(4):511-520. PubMed ID: 28981578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytotoxicity of low-weight carboxylic acids.
    Himanen M; Prochazka P; Hänninen K; Oikari A
    Chemosphere; 2012 Jul; 88(4):426-31. PubMed ID: 22440635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The growth and development of cress (
    Ajdanian L; Babaei M; Aroiee H
    Heliyon; 2019 Jul; 5(7):e02109. PubMed ID: 31388573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of toxicity of imidazolium ionic liquids to watercress (Lepidium sativum L.).
    Studzińska S; Buszewski B
    Anal Bioanal Chem; 2009 Feb; 393(3):983-90. PubMed ID: 19052732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Optically Active Ethyl 2-Phthalimidooxypropionate on the Growth of Cress, Lepidium sativum.
    Takekida Y; Okazaki M; Shuto Y
    Biosci Biotechnol Biochem; 1999; 63(10):1831-3. PubMed ID: 26300175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant Triterpenoid Crosstalk: The Interaction of Brassinosteroids and Phytoecdysteroids in
    Tarkowská D; Krampolová E; Strnad M
    Plants (Basel); 2020 Oct; 9(10):. PubMed ID: 33036389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytotoxicity assessment of olive mill solid wastes and the influence of phenolic compounds.
    Pinho IA; Lopes DV; Martins RC; Quina MJ
    Chemosphere; 2017 Oct; 185():258-267. PubMed ID: 28697431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationships between phenolic acid concentrations, transpiration, water utilization, leaf area expansion, and uptake of phenolic acids: nutrient culture studies.
    Blum U; Gerig TM
    J Chem Ecol; 2005 Aug; 31(8):1907-32. PubMed ID: 16222815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicological effects of different-sized Co-Fe (CoFe
    Montvydienė D; Jagminas A; Jurgelėnė Ž; Kazlauskas M; Butrimienė R; Žukauskaitė Z; Kazlauskienė N
    Ecotoxicology; 2021 Mar; 30(2):277-291. PubMed ID: 33471270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.