These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 24425041)

  • 1. Mechanical decision trees for investigating and modulating single-cell cancer invasion dynamics.
    Mak M; Erickson D
    Lab Chip; 2014 Mar; 14(5):964-71. PubMed ID: 24425041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemotaxis of cell populations through confined spaces at single-cell resolution.
    Tong Z; Balzer EM; Dallas MR; Hung WC; Stebe KJ; Konstantopoulos K
    PLoS One; 2012; 7(1):e29211. PubMed ID: 22279529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines.
    Swaminathan V; Mythreye K; O'Brien ET; Berchuck A; Blobe GC; Superfine R
    Cancer Res; 2011 Aug; 71(15):5075-80. PubMed ID: 21642375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell proliferation and migration inside single cell arrays.
    Chanasakulniyom M; Glidle A; Cooper JM
    Lab Chip; 2015 Jan; 15(1):208-15. PubMed ID: 25340681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic platforms for generating dynamic environmental perturbations to study the responses of single yeast cells.
    Bisaria A; Hersen P; McClean MN
    Methods Mol Biol; 2014; 1205():111-29. PubMed ID: 25213242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laminar flow mediated continuous single-cell analysis on a novel poly(dimethylsiloxane) microfluidic chip.
    Deng B; Tian Y; Yu X; Song J; Guo F; Xiao Y; Zhang Z
    Anal Chim Acta; 2014 Apr; 820():104-11. PubMed ID: 24745743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing cell traction forces in confined microenvironments.
    Raman PS; Paul CD; Stroka KM; Konstantopoulos K
    Lab Chip; 2013 Dec; 13(23):4599-607. PubMed ID: 24100608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Assay To Study the Combinatorial Impact of Substrate Properties on Mesenchymal Stem Cell Migration.
    Menon NV; Chuah YJ; Phey S; Zhang Y; Wu Y; Chan V; Kang Y
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17095-103. PubMed ID: 26186177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Mechanotyping of a Single Cell with Two Consecutive Constrictions of Different Sizes and an Electrical Detection System.
    Sano M; Kaji N; Rowat AC; Yasaki H; Shao L; Odaka H; Yasui T; Higashiyama T; Baba Y
    Anal Chem; 2019 Oct; 91(20):12890-12899. PubMed ID: 31442026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A microfluidic chip for the versatile chemical analysis of single cells.
    Eyer K; Kuhn P; Stratz S; Dittrich PS
    J Vis Exp; 2013 Oct; (80):e50618. PubMed ID: 24192501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating mechanical transition effects of invading cancer cells with a subnucleus-scaled microfluidic serial dimensional modulation device.
    Mak M; Reinhart-King CA; Erickson D
    Lab Chip; 2013 Feb; 13(3):340-8. PubMed ID: 23212313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Matrigel coated polydimethylsiloxane based microfluidic devices for studying metastatic and non-metastatic cancer cell invasion and migration.
    Chaw KC; Manimaran M; Tay FE; Swaminathan S
    Biomed Microdevices; 2007 Aug; 9(4):597-602. PubMed ID: 17505887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic systems for live cell imaging.
    Lee P; Gaige T; Hung P
    Methods Cell Biol; 2011; 102():77-103. PubMed ID: 21704836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple, fast and high-throughput single-cell analysis on PDMS microfluidic chips.
    Yu L; Huang H; Dong X; Wu D; Qin J; Lin B
    Electrophoresis; 2008 Dec; 29(24):5055-60. PubMed ID: 19130590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-cell chemical lysis on microfluidic chips with arrays of microwells.
    Jen CP; Hsiao JH; Maslov NA
    Sensors (Basel); 2012; 12(1):347-58. PubMed ID: 22368473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-Cell Migration in Complex Microenvironments: Mechanics and Signaling Dynamics.
    Mak M; Spill F; Kamm RD; Zaman MH
    J Biomech Eng; 2016 Feb; 138(2):021004. PubMed ID: 26639083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-cell RNA-sequencing of migratory breast cancer cells: discovering genes associated with cancer metastasis.
    Chen YC; Sahoo S; Brien R; Jung S; Humphries B; Lee W; Cheng YH; Zhang Z; Luker KE; Wicha MS; Luker GD; Yoon E
    Analyst; 2019 Dec; 144(24):7296-7309. PubMed ID: 31710321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of stable orthogonal gradients of chemical concentration and substrate stiffness in a microfluidic device.
    García S; Sunyer R; Olivares A; Noailly J; Atencia J; Trepat X
    Lab Chip; 2015 Jun; 15(12):2606-14. PubMed ID: 25977997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated analysis of dynamic behavior of single cells in picoliter droplets.
    Khorshidi MA; Rajeswari PK; Wählby C; Joensson HN; Andersson Svahn H
    Lab Chip; 2014 Mar; 14(5):931-7. PubMed ID: 24385254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introduction: why analyze single cells?
    Di Carlo D; Tse HT; Gossett DR
    Methods Mol Biol; 2012; 853():1-10. PubMed ID: 22323135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.