BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 24425069)

  • 1. Optimization and characterization of stable lipid-based, oxygen-filled microbubbles by mixture design.
    Polizzotti BD; Thomson LM; O'Connell DW; McGowan FX; Kheir JN
    J Biomed Mater Res B Appl Biomater; 2014 Aug; 102(6):1148-56. PubMed ID: 24425069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemodynamic Effects of Lipid-Based Oxygen Microbubbles via Rapid Intravenous Injection in Rodents.
    Black KJ; Lock AT; Thomson LM; Cole AR; Tang X; Polizzotti BD; Kheir JN
    Pharm Res; 2017 Oct; 34(10):2156-2162. PubMed ID: 28685297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bulk manufacture of concentrated oxygen gas-filled microparticles for intravenous oxygen delivery.
    Kheir JN; Polizzotti BD; Thomson LM; O'Connell DW; Black KJ; Lee RW; Wilking JN; Graham AC; Bell DC; McGowan FX
    Adv Healthc Mater; 2013 Aug; 2(8):1131-41. PubMed ID: 23471884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of PEGylation on performance of protein microbubbles and its comparison with lipid microbubbles.
    Upadhyay A; Dalvi SV; Gupta G; Khanna N
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():425-430. PubMed ID: 27987726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manufacture of concentrated, lipid-based oxygen microbubble emulsions by high shear homogenization and serial concentration.
    Thomson LM; Polizzotti BD; McGowan FX; Kheir JN
    J Vis Exp; 2014 May; (87):. PubMed ID: 24894333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the Role of Lipid Transfer in Microbubble-Mediated Drug Delivery.
    Aron M; Vince O; Gray M; Mannaris C; Stride E
    Langmuir; 2019 Oct; 35(40):13205-13215. PubMed ID: 31517490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phospholipid-stabilized microbubble foam for injectable oxygen delivery.
    Swanson EJ; Mohan V; Kheir J; Borden MA
    Langmuir; 2010 Oct; 26(20):15726-9. PubMed ID: 20873807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preserving the Integrity of Surfactant-Stabilized Microbubble Membranes for Localized Oxygen Delivery.
    Oeffinger BE; Vaidya P; Ayaz I; Shraim R; Eisenbrey JR; Wheatley MA
    Langmuir; 2019 Aug; 35(31):10068-10078. PubMed ID: 30827115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long lived microbubbles for oxygen delivery.
    Gerber F; Waton G; Krafft MP; Vandamme TF
    Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(1):119-24. PubMed ID: 17364476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of the preparation of sonogenic phospholipids-based microbubbles by using central composite experimental design and response surface methodology.
    Zhao YZ; Lu CT; Mei XG
    Yao Xue Xue Bao; 2008 Aug; 43(8):862-7. PubMed ID: 18956781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and evaluation of stability and ultrasound response of DSPC-DPSG-based freeze-dried microbubbles.
    Unga J; Omata D; Kudo N; Ueno S; Munakata L; Shima T; Suzuki R; Maruyama K
    J Liposome Res; 2019 Dec; 29(4):368-374. PubMed ID: 30526185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study.
    Bagatolli LA; Gratton E
    Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an ultrasound sensitive oxygen carrier for oxygen delivery to hypoxic tissue.
    Eisenbrey JR; Albala L; Kramer MR; Daroshefski N; Brown D; Liu JB; Stanczak M; O'Kane P; Forsberg F; Wheatley MA
    Int J Pharm; 2015 Jan; 478(1):361-367. PubMed ID: 25448552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand Distribution and Lipid Phase Behavior in Phospholipid-Coated Microbubbles and Monolayers.
    Langeveld SAG; Schwieger C; Beekers I; Blaffert J; van Rooij T; Blume A; Kooiman K
    Langmuir; 2020 Mar; 36(12):3221-3233. PubMed ID: 32109064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intermolecular Forces Model for Lipid Microbubble Shells.
    Borden MA
    Langmuir; 2019 Aug; 35(31):10042-10051. PubMed ID: 30543753
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Therapeutic applications of lipid-coated microbubbles.
    Unger EC; Porter T; Culp W; Labell R; Matsunaga T; Zutshi R
    Adv Drug Deliv Rev; 2004 May; 56(9):1291-314. PubMed ID: 15109770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gas-filled microbubbles--a novel susceptibility contrast agent for brain and liver MRI.
    Chow AM; Cheung JS; Wu EX
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4049-52. PubMed ID: 19964096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sonoporation: mechanistic insights and ongoing challenges for gene transfer.
    Delalande A; Kotopoulis S; Postema M; Midoux P; Pichon C
    Gene; 2013 Aug; 525(2):191-9. PubMed ID: 23566843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbubble-mediated oxygen delivery to hypoxic tissues as a new therapeutic device.
    Bisazza A; Giustetto P; Rolfo A; Caniggia I; Balbis S; Guiot C; Cavalli R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2067-70. PubMed ID: 19163102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasound-mediated destruction of oxygen and paclitaxel loaded lipid microbubbles for combination therapy in hypoxic ovarian cancer cells.
    Sun J; Yin M; Zhu S; Liu L; Zhu Y; Wang Z; Xu RX; Chang S
    Ultrason Sonochem; 2016 Jan; 28():319-326. PubMed ID: 26384914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.