BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 24425102)

  • 1. Probing location of anti-TB drugs loaded in Brij 96 microemulsions using thermoanalytical and photophysical approach.
    Kaur G; Mehta SK
    J Pharm Sci; 2014 Mar; 103(3):937-44. PubMed ID: 24425102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coencapsulation of hydrophobic and hydrophilic antituberculosis drugs in synergistic Brij 96 microemulsions: a biophysical characterization.
    Kaur G; Mehta SK; Kumar S; Bhanjana G; Dilbaghi N
    J Pharm Sci; 2015 Jul; 104(7):2203-12. PubMed ID: 25951802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Location of anti-TB drugs and microstructural changes in organized surfactant media using optical properties.
    Mehta SK; Kaur G
    J Colloid Interface Sci; 2011 Apr; 356(2):589-97. PubMed ID: 21292277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entrapment of multiple anti-Tb drugs in microemulsion system: quantitative analysis, stability, and in vitro release studies.
    Mehta SK; Kaur G; Bhasin KK
    J Pharm Sci; 2010 Apr; 99(4):1896-911. PubMed ID: 19894276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial neural networks to optimize formulation components of a fixed-dose combination of rifampicin, isoniazid and pyrazinamide in a microemulsion.
    Glass BD; Agatonovic-Kustrin S; Wisch MH
    Curr Drug Discov Technol; 2005 Sep; 2(3):195-201. PubMed ID: 16472228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formulation of Tyloxapol niosomes for encapsulation, stabilization and dissolution of anti-tubercular drugs.
    Mehta SK; Jindal N
    Colloids Surf B Biointerfaces; 2013 Jan; 101():434-41. PubMed ID: 23010052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Stability of Tuberculosis Drug Fixed-Dose Combination Using Isoniazid-Caffeic Acid and Vanillic Acid Cocrystal.
    Battini S; Mannava MKC; Nangia A
    J Pharm Sci; 2018 Jun; 107(6):1667-1679. PubMed ID: 29462633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transdermal delivery of hydrophobic and hydrophilic local anesthetics from o/w and w/o Brij 97-based microemulsions.
    Junyaprasert VB; Boonme P; Songkro S; Krauel K; Rades T
    J Pharm Pharm Sci; 2007; 10(3):288-98. PubMed ID: 17727792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encapsulation of Rifampicin in a solid lipid nanoparticulate system to limit its degradation and interaction with Isoniazid at acidic pH.
    Singh H; Bhandari R; Kaur IP
    Int J Pharm; 2013 Mar; 446(1-2):106-11. PubMed ID: 23410991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous determination of rifampicin, isoniazid and pyrazinamide in tablet preparations by multivariate spectrophotometric calibration.
    Goicoechea HC; Olivieri AC
    J Pharm Biomed Anal; 1999 Aug; 20(4):681-6. PubMed ID: 10704137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stability of rifampicin in dissolution medium in presence of isoniazid.
    Shishoo CJ; Shah SA; Rathod IS; Savale SS; Kotecha JS; Shah PB
    Int J Pharm; 1999 Nov; 190(1):109-23. PubMed ID: 10528103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compatibility Between Four Anti-TB Drugs and Tablet Excipients Determined By Microcalorimetry.
    Aucamp M; Liebenberg W; Okaecwe T; Geldenhuys M; Stieger N
    Pharmazie; 2019 Jun; 74(6):350-351. PubMed ID: 31138372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tween-embedded microemulsions--physicochemical and spectroscopic analysis for antitubercular drugs.
    Mehta SK; Kaur G; Bhasin KK
    AAPS PharmSciTech; 2010 Mar; 11(1):143-53. PubMed ID: 20087697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Application of near infrared spectroscopy in rapid and simultaneous determination of essential components in five varieties of anti-tuberculosis tablets].
    Teng LS; Wang D; Song J; Zhang YB; Guo WL; Teng LR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1814-8. PubMed ID: 18975810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CHIH-DFT determination of the molecular structure infrared spectra, UV spectra and chemical reactivity of three antitubercular compounds: Rifampicin, Isoniazid and Pyrazinamide.
    Favila A; Gallo M; Glossman-Mitnik D
    J Mol Model; 2007 Apr; 13(4):505-18. PubMed ID: 17260147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability of isoniazid, rifampin and pyrazinamide in suspensions used for the treatment of tuberculosis in children.
    Seifart HI; Parkin DP; Donald PR
    Pediatr Infect Dis J; 1991 Nov; 10(11):827-31. PubMed ID: 1749695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of microemulsion structures in the pseudoternary phase diagram of isopropyl palmitate/water/Brij 97:1-butanol.
    Boonme P; Krauel K; Graf A; Rades T; Junyaprasert VB
    AAPS PharmSciTech; 2006 May; 7(2):E45. PubMed ID: 16796362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mixed surfactant (altering chain length and head group) aggregates as an effective carrier for tuberculosis drug.
    Kumar A; Rekha ; Kansal SK; Ibhadon AO; Mehta SK
    Chem Phys Lipids; 2018 Sep; 215():11-17. PubMed ID: 30033376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic explanation to the catalysis by pyrazinamide and ethambutol of reaction between rifampicin and isoniazid in anti-TB FDCs.
    Bhutani H; Singh S; Jindal KC; Chakraborti AK
    J Pharm Biomed Anal; 2005 Oct; 39(5):892-9. PubMed ID: 15978767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isoniazid and its toxic metabolite hydrazine induce in vitro pyrazinamide toxicity.
    Tostmann A; Boeree MJ; Peters WH; Roelofs HM; Aarnoutse RE; van der Ven AJ; Dekhuijzen PN
    Int J Antimicrob Agents; 2008 Jun; 31(6):577-80. PubMed ID: 18358703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.