These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 24425102)
1. Probing location of anti-TB drugs loaded in Brij 96 microemulsions using thermoanalytical and photophysical approach. Kaur G; Mehta SK J Pharm Sci; 2014 Mar; 103(3):937-44. PubMed ID: 24425102 [TBL] [Abstract][Full Text] [Related]
2. Coencapsulation of hydrophobic and hydrophilic antituberculosis drugs in synergistic Brij 96 microemulsions: a biophysical characterization. Kaur G; Mehta SK; Kumar S; Bhanjana G; Dilbaghi N J Pharm Sci; 2015 Jul; 104(7):2203-12. PubMed ID: 25951802 [TBL] [Abstract][Full Text] [Related]
3. Location of anti-TB drugs and microstructural changes in organized surfactant media using optical properties. Mehta SK; Kaur G J Colloid Interface Sci; 2011 Apr; 356(2):589-97. PubMed ID: 21292277 [TBL] [Abstract][Full Text] [Related]
4. Entrapment of multiple anti-Tb drugs in microemulsion system: quantitative analysis, stability, and in vitro release studies. Mehta SK; Kaur G; Bhasin KK J Pharm Sci; 2010 Apr; 99(4):1896-911. PubMed ID: 19894276 [TBL] [Abstract][Full Text] [Related]
5. Artificial neural networks to optimize formulation components of a fixed-dose combination of rifampicin, isoniazid and pyrazinamide in a microemulsion. Glass BD; Agatonovic-Kustrin S; Wisch MH Curr Drug Discov Technol; 2005 Sep; 2(3):195-201. PubMed ID: 16472228 [TBL] [Abstract][Full Text] [Related]
6. Formulation of Tyloxapol niosomes for encapsulation, stabilization and dissolution of anti-tubercular drugs. Mehta SK; Jindal N Colloids Surf B Biointerfaces; 2013 Jan; 101():434-41. PubMed ID: 23010052 [TBL] [Abstract][Full Text] [Related]
7. Improved Stability of Tuberculosis Drug Fixed-Dose Combination Using Isoniazid-Caffeic Acid and Vanillic Acid Cocrystal. Battini S; Mannava MKC; Nangia A J Pharm Sci; 2018 Jun; 107(6):1667-1679. PubMed ID: 29462633 [TBL] [Abstract][Full Text] [Related]
8. Transdermal delivery of hydrophobic and hydrophilic local anesthetics from o/w and w/o Brij 97-based microemulsions. Junyaprasert VB; Boonme P; Songkro S; Krauel K; Rades T J Pharm Pharm Sci; 2007; 10(3):288-98. PubMed ID: 17727792 [TBL] [Abstract][Full Text] [Related]
9. Encapsulation of Rifampicin in a solid lipid nanoparticulate system to limit its degradation and interaction with Isoniazid at acidic pH. Singh H; Bhandari R; Kaur IP Int J Pharm; 2013 Mar; 446(1-2):106-11. PubMed ID: 23410991 [TBL] [Abstract][Full Text] [Related]
10. Simultaneous determination of rifampicin, isoniazid and pyrazinamide in tablet preparations by multivariate spectrophotometric calibration. Goicoechea HC; Olivieri AC J Pharm Biomed Anal; 1999 Aug; 20(4):681-6. PubMed ID: 10704137 [TBL] [Abstract][Full Text] [Related]
11. Stability of rifampicin in dissolution medium in presence of isoniazid. Shishoo CJ; Shah SA; Rathod IS; Savale SS; Kotecha JS; Shah PB Int J Pharm; 1999 Nov; 190(1):109-23. PubMed ID: 10528103 [TBL] [Abstract][Full Text] [Related]
12. Compatibility Between Four Anti-TB Drugs and Tablet Excipients Determined By Microcalorimetry. Aucamp M; Liebenberg W; Okaecwe T; Geldenhuys M; Stieger N Pharmazie; 2019 Jun; 74(6):350-351. PubMed ID: 31138372 [TBL] [Abstract][Full Text] [Related]
13. Tween-embedded microemulsions--physicochemical and spectroscopic analysis for antitubercular drugs. Mehta SK; Kaur G; Bhasin KK AAPS PharmSciTech; 2010 Mar; 11(1):143-53. PubMed ID: 20087697 [TBL] [Abstract][Full Text] [Related]
14. [Application of near infrared spectroscopy in rapid and simultaneous determination of essential components in five varieties of anti-tuberculosis tablets]. Teng LS; Wang D; Song J; Zhang YB; Guo WL; Teng LR Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Aug; 28(8):1814-8. PubMed ID: 18975810 [TBL] [Abstract][Full Text] [Related]
15. CHIH-DFT determination of the molecular structure infrared spectra, UV spectra and chemical reactivity of three antitubercular compounds: Rifampicin, Isoniazid and Pyrazinamide. Favila A; Gallo M; Glossman-Mitnik D J Mol Model; 2007 Apr; 13(4):505-18. PubMed ID: 17260147 [TBL] [Abstract][Full Text] [Related]
16. Stability of isoniazid, rifampin and pyrazinamide in suspensions used for the treatment of tuberculosis in children. Seifart HI; Parkin DP; Donald PR Pediatr Infect Dis J; 1991 Nov; 10(11):827-31. PubMed ID: 1749695 [TBL] [Abstract][Full Text] [Related]
17. Characterization of microemulsion structures in the pseudoternary phase diagram of isopropyl palmitate/water/Brij 97:1-butanol. Boonme P; Krauel K; Graf A; Rades T; Junyaprasert VB AAPS PharmSciTech; 2006 May; 7(2):E45. PubMed ID: 16796362 [TBL] [Abstract][Full Text] [Related]
18. Mixed surfactant (altering chain length and head group) aggregates as an effective carrier for tuberculosis drug. Kumar A; Rekha ; Kansal SK; Ibhadon AO; Mehta SK Chem Phys Lipids; 2018 Sep; 215():11-17. PubMed ID: 30033376 [TBL] [Abstract][Full Text] [Related]
19. Mechanistic explanation to the catalysis by pyrazinamide and ethambutol of reaction between rifampicin and isoniazid in anti-TB FDCs. Bhutani H; Singh S; Jindal KC; Chakraborti AK J Pharm Biomed Anal; 2005 Oct; 39(5):892-9. PubMed ID: 15978767 [TBL] [Abstract][Full Text] [Related]
20. Isoniazid and its toxic metabolite hydrazine induce in vitro pyrazinamide toxicity. Tostmann A; Boeree MJ; Peters WH; Roelofs HM; Aarnoutse RE; van der Ven AJ; Dekhuijzen PN Int J Antimicrob Agents; 2008 Jun; 31(6):577-80. PubMed ID: 18358703 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]